Cargando…

Genetic Testing and Risk Scores: Impact on Familial Hypercholesterolemia

Familial Hypercholesterolemia (FH) is an inherited lipid disorder affecting 1 in 220 individuals resulting in highly elevated low-density lipoprotein levels and risk of premature coronary disease. Pathogenic variants causing FH typically involve the LDL receptor (LDLR), apolipoprotein B-100 (APOB),...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarraju, Ashish, Knowles, Joshua W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361766/
https://www.ncbi.nlm.nih.gov/pubmed/30761309
http://dx.doi.org/10.3389/fcvm.2019.00005
Descripción
Sumario:Familial Hypercholesterolemia (FH) is an inherited lipid disorder affecting 1 in 220 individuals resulting in highly elevated low-density lipoprotein levels and risk of premature coronary disease. Pathogenic variants causing FH typically involve the LDL receptor (LDLR), apolipoprotein B-100 (APOB), and proprotein convertase subtulisin/kexin type 9 genes (PCSK9) and if identified convey a risk of early onset coronary artery disease (ASCVD) of 3- to 10-fold vs. the general population depending on the severity of the mutation. Identification of monogenic FH within a family has implications for family-based testing (cascade screening), risk stratification, and potentially management, and it has now been recommended that such testing be offered to all potential FH patients. Recently, robust genome wide association studies (GWAS) have led to the recognition that the accumulation of common, small effect alleles affecting many LDL-c raising genes can result in a clinical phenotype largely indistinguishable from monogenic FH (i.e., a risk of early onset ASCVD of ~3-fold) in those at the extreme tail of the distribution for these alleles (i.e., the top 8% of the population for a polygenic risk score). The incorporation of these genetic risk scores into clinical practice for non-FH patients may improve risk stratification but is not yet widely performed due to a less robust evidence base for utility. Here, we review the current status of FH genetic testing, potential future applications as well as challenges and pitfalls.