Cargando…
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcri...
Autores principales: | Mongia, Aanchal, Sengupta, Debarka, Majumdar, Angshul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361810/ https://www.ncbi.nlm.nih.gov/pubmed/30761179 http://dx.doi.org/10.3389/fgene.2019.00009 |
Ejemplares similares
-
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
FITs: forest of imputation trees for recovering true signals in single-cell open chromatin profiles
por: Sharma, Rachesh, et al.
Publicado: (2020) -
AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders
por: Xu, Li, et al.
Publicado: (2021) -
Missing Value Imputation With Low-Rank Matrix Completion in Single-Cell RNA-Seq Data by Considering Cell Heterogeneity
por: Huang, Meng, et al.
Publicado: (2022) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018)