Cargando…
A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma
First-order radiomic features, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG), are associated with disease progression in early-stage classical Hodgkin lymphoma (HL). We hypothesized that a model incorporating first- and second-order radiomic features would more accurately pr...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361903/ https://www.ncbi.nlm.nih.gov/pubmed/30718585 http://dx.doi.org/10.1038/s41598-018-37197-z |
_version_ | 1783392773826674688 |
---|---|
author | Milgrom, Sarah A. Elhalawani, Hesham Lee, Joonsang Wang, Qianghu Mohamed, Abdallah S. R. Dabaja, Bouthaina S. Pinnix, Chelsea C. Gunther, Jillian R. Court, Laurence Rao, Arvind Fuller, Clifton D. Akhtari, Mani Aristophanous, Michalis Mawlawi, Osama Chuang, Hubert H. Sulman, Erik P. Lee, Hun J. Hagemeister, Frederick B. Oki, Yasuhiro Fanale, Michelle Smith, Grace L. |
author_facet | Milgrom, Sarah A. Elhalawani, Hesham Lee, Joonsang Wang, Qianghu Mohamed, Abdallah S. R. Dabaja, Bouthaina S. Pinnix, Chelsea C. Gunther, Jillian R. Court, Laurence Rao, Arvind Fuller, Clifton D. Akhtari, Mani Aristophanous, Michalis Mawlawi, Osama Chuang, Hubert H. Sulman, Erik P. Lee, Hun J. Hagemeister, Frederick B. Oki, Yasuhiro Fanale, Michelle Smith, Grace L. |
author_sort | Milgrom, Sarah A. |
collection | PubMed |
description | First-order radiomic features, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG), are associated with disease progression in early-stage classical Hodgkin lymphoma (HL). We hypothesized that a model incorporating first- and second-order radiomic features would more accurately predict outcome than MTV or TLG alone. We assessed whether radiomic features extracted from baseline PET scans predicted relapsed or refractory disease status in a cohort of 251 patients with stage I-II HL who were managed at a tertiary cancer center. Models were developed and tested using a machine-learning algorithm. Features extracted from mediastinal sites were highly predictive of primary refractory disease. A model incorporating 5 of the most predictive features had an area under the curve (AUC) of 95.2% and total error rate of 1.8%. By comparison, the AUC was 78% for both MTV and TLG and was 65% for maximum standardize uptake value (SUV(max)). Furthermore, among the patients with refractory mediastinal disease, our model distinguished those who were successfully salvaged from those who ultimately died of HL. We conclude that our PET radiomic model may improve upfront stratification of early-stage HL patients with mediastinal disease and thus contribute to risk-adapted, individualized management. |
format | Online Article Text |
id | pubmed-6361903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-63619032019-02-06 A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma Milgrom, Sarah A. Elhalawani, Hesham Lee, Joonsang Wang, Qianghu Mohamed, Abdallah S. R. Dabaja, Bouthaina S. Pinnix, Chelsea C. Gunther, Jillian R. Court, Laurence Rao, Arvind Fuller, Clifton D. Akhtari, Mani Aristophanous, Michalis Mawlawi, Osama Chuang, Hubert H. Sulman, Erik P. Lee, Hun J. Hagemeister, Frederick B. Oki, Yasuhiro Fanale, Michelle Smith, Grace L. Sci Rep Article First-order radiomic features, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG), are associated with disease progression in early-stage classical Hodgkin lymphoma (HL). We hypothesized that a model incorporating first- and second-order radiomic features would more accurately predict outcome than MTV or TLG alone. We assessed whether radiomic features extracted from baseline PET scans predicted relapsed or refractory disease status in a cohort of 251 patients with stage I-II HL who were managed at a tertiary cancer center. Models were developed and tested using a machine-learning algorithm. Features extracted from mediastinal sites were highly predictive of primary refractory disease. A model incorporating 5 of the most predictive features had an area under the curve (AUC) of 95.2% and total error rate of 1.8%. By comparison, the AUC was 78% for both MTV and TLG and was 65% for maximum standardize uptake value (SUV(max)). Furthermore, among the patients with refractory mediastinal disease, our model distinguished those who were successfully salvaged from those who ultimately died of HL. We conclude that our PET radiomic model may improve upfront stratification of early-stage HL patients with mediastinal disease and thus contribute to risk-adapted, individualized management. Nature Publishing Group UK 2019-02-04 /pmc/articles/PMC6361903/ /pubmed/30718585 http://dx.doi.org/10.1038/s41598-018-37197-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Milgrom, Sarah A. Elhalawani, Hesham Lee, Joonsang Wang, Qianghu Mohamed, Abdallah S. R. Dabaja, Bouthaina S. Pinnix, Chelsea C. Gunther, Jillian R. Court, Laurence Rao, Arvind Fuller, Clifton D. Akhtari, Mani Aristophanous, Michalis Mawlawi, Osama Chuang, Hubert H. Sulman, Erik P. Lee, Hun J. Hagemeister, Frederick B. Oki, Yasuhiro Fanale, Michelle Smith, Grace L. A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma |
title | A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma |
title_full | A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma |
title_fullStr | A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma |
title_full_unstemmed | A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma |
title_short | A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma |
title_sort | pet radiomics model to predict refractory mediastinal hodgkin lymphoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361903/ https://www.ncbi.nlm.nih.gov/pubmed/30718585 http://dx.doi.org/10.1038/s41598-018-37197-z |
work_keys_str_mv | AT milgromsaraha apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT elhalawanihesham apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT leejoonsang apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT wangqianghu apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT mohamedabdallahsr apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT dabajabouthainas apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT pinnixchelseac apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT guntherjillianr apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT courtlaurence apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT raoarvind apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT fullercliftond apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT akhtarimani apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT aristophanousmichalis apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT mawlawiosama apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT chuanghuberth apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT sulmanerikp apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT leehunj apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT hagemeisterfrederickb apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT okiyasuhiro apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT fanalemichelle apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT smithgracel apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT milgromsaraha petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT elhalawanihesham petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT leejoonsang petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT wangqianghu petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT mohamedabdallahsr petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT dabajabouthainas petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT pinnixchelseac petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT guntherjillianr petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT courtlaurence petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT raoarvind petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT fullercliftond petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT akhtarimani petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT aristophanousmichalis petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT mawlawiosama petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT chuanghuberth petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT sulmanerikp petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT leehunj petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT hagemeisterfrederickb petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT okiyasuhiro petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT fanalemichelle petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma AT smithgracel petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma |