Cargando…

A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma

First-order radiomic features, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG), are associated with disease progression in early-stage classical Hodgkin lymphoma (HL). We hypothesized that a model incorporating first- and second-order radiomic features would more accurately pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Milgrom, Sarah A., Elhalawani, Hesham, Lee, Joonsang, Wang, Qianghu, Mohamed, Abdallah S. R., Dabaja, Bouthaina S., Pinnix, Chelsea C., Gunther, Jillian R., Court, Laurence, Rao, Arvind, Fuller, Clifton D., Akhtari, Mani, Aristophanous, Michalis, Mawlawi, Osama, Chuang, Hubert H., Sulman, Erik P., Lee, Hun J., Hagemeister, Frederick B., Oki, Yasuhiro, Fanale, Michelle, Smith, Grace L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361903/
https://www.ncbi.nlm.nih.gov/pubmed/30718585
http://dx.doi.org/10.1038/s41598-018-37197-z
_version_ 1783392773826674688
author Milgrom, Sarah A.
Elhalawani, Hesham
Lee, Joonsang
Wang, Qianghu
Mohamed, Abdallah S. R.
Dabaja, Bouthaina S.
Pinnix, Chelsea C.
Gunther, Jillian R.
Court, Laurence
Rao, Arvind
Fuller, Clifton D.
Akhtari, Mani
Aristophanous, Michalis
Mawlawi, Osama
Chuang, Hubert H.
Sulman, Erik P.
Lee, Hun J.
Hagemeister, Frederick B.
Oki, Yasuhiro
Fanale, Michelle
Smith, Grace L.
author_facet Milgrom, Sarah A.
Elhalawani, Hesham
Lee, Joonsang
Wang, Qianghu
Mohamed, Abdallah S. R.
Dabaja, Bouthaina S.
Pinnix, Chelsea C.
Gunther, Jillian R.
Court, Laurence
Rao, Arvind
Fuller, Clifton D.
Akhtari, Mani
Aristophanous, Michalis
Mawlawi, Osama
Chuang, Hubert H.
Sulman, Erik P.
Lee, Hun J.
Hagemeister, Frederick B.
Oki, Yasuhiro
Fanale, Michelle
Smith, Grace L.
author_sort Milgrom, Sarah A.
collection PubMed
description First-order radiomic features, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG), are associated with disease progression in early-stage classical Hodgkin lymphoma (HL). We hypothesized that a model incorporating first- and second-order radiomic features would more accurately predict outcome than MTV or TLG alone. We assessed whether radiomic features extracted from baseline PET scans predicted relapsed or refractory disease status in a cohort of 251 patients with stage I-II HL who were managed at a tertiary cancer center. Models were developed and tested using a machine-learning algorithm. Features extracted from mediastinal sites were highly predictive of primary refractory disease. A model incorporating 5 of the most predictive features had an area under the curve (AUC) of 95.2% and total error rate of 1.8%. By comparison, the AUC was 78% for both MTV and TLG and was 65% for maximum standardize uptake value (SUV(max)). Furthermore, among the patients with refractory mediastinal disease, our model distinguished those who were successfully salvaged from those who ultimately died of HL. We conclude that our PET radiomic model may improve upfront stratification of early-stage HL patients with mediastinal disease and thus contribute to risk-adapted, individualized management.
format Online
Article
Text
id pubmed-6361903
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63619032019-02-06 A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma Milgrom, Sarah A. Elhalawani, Hesham Lee, Joonsang Wang, Qianghu Mohamed, Abdallah S. R. Dabaja, Bouthaina S. Pinnix, Chelsea C. Gunther, Jillian R. Court, Laurence Rao, Arvind Fuller, Clifton D. Akhtari, Mani Aristophanous, Michalis Mawlawi, Osama Chuang, Hubert H. Sulman, Erik P. Lee, Hun J. Hagemeister, Frederick B. Oki, Yasuhiro Fanale, Michelle Smith, Grace L. Sci Rep Article First-order radiomic features, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG), are associated with disease progression in early-stage classical Hodgkin lymphoma (HL). We hypothesized that a model incorporating first- and second-order radiomic features would more accurately predict outcome than MTV or TLG alone. We assessed whether radiomic features extracted from baseline PET scans predicted relapsed or refractory disease status in a cohort of 251 patients with stage I-II HL who were managed at a tertiary cancer center. Models were developed and tested using a machine-learning algorithm. Features extracted from mediastinal sites were highly predictive of primary refractory disease. A model incorporating 5 of the most predictive features had an area under the curve (AUC) of 95.2% and total error rate of 1.8%. By comparison, the AUC was 78% for both MTV and TLG and was 65% for maximum standardize uptake value (SUV(max)). Furthermore, among the patients with refractory mediastinal disease, our model distinguished those who were successfully salvaged from those who ultimately died of HL. We conclude that our PET radiomic model may improve upfront stratification of early-stage HL patients with mediastinal disease and thus contribute to risk-adapted, individualized management. Nature Publishing Group UK 2019-02-04 /pmc/articles/PMC6361903/ /pubmed/30718585 http://dx.doi.org/10.1038/s41598-018-37197-z Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Milgrom, Sarah A.
Elhalawani, Hesham
Lee, Joonsang
Wang, Qianghu
Mohamed, Abdallah S. R.
Dabaja, Bouthaina S.
Pinnix, Chelsea C.
Gunther, Jillian R.
Court, Laurence
Rao, Arvind
Fuller, Clifton D.
Akhtari, Mani
Aristophanous, Michalis
Mawlawi, Osama
Chuang, Hubert H.
Sulman, Erik P.
Lee, Hun J.
Hagemeister, Frederick B.
Oki, Yasuhiro
Fanale, Michelle
Smith, Grace L.
A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma
title A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma
title_full A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma
title_fullStr A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma
title_full_unstemmed A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma
title_short A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma
title_sort pet radiomics model to predict refractory mediastinal hodgkin lymphoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361903/
https://www.ncbi.nlm.nih.gov/pubmed/30718585
http://dx.doi.org/10.1038/s41598-018-37197-z
work_keys_str_mv AT milgromsaraha apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT elhalawanihesham apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT leejoonsang apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT wangqianghu apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT mohamedabdallahsr apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT dabajabouthainas apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT pinnixchelseac apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT guntherjillianr apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT courtlaurence apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT raoarvind apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT fullercliftond apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT akhtarimani apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT aristophanousmichalis apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT mawlawiosama apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT chuanghuberth apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT sulmanerikp apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT leehunj apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT hagemeisterfrederickb apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT okiyasuhiro apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT fanalemichelle apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT smithgracel apetradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT milgromsaraha petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT elhalawanihesham petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT leejoonsang petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT wangqianghu petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT mohamedabdallahsr petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT dabajabouthainas petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT pinnixchelseac petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT guntherjillianr petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT courtlaurence petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT raoarvind petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT fullercliftond petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT akhtarimani petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT aristophanousmichalis petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT mawlawiosama petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT chuanghuberth petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT sulmanerikp petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT leehunj petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT hagemeisterfrederickb petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT okiyasuhiro petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT fanalemichelle petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma
AT smithgracel petradiomicsmodeltopredictrefractorymediastinalhodgkinlymphoma