Cargando…

High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells

Stress-induced premature senescence program is known to be activated in cells by various genotoxic stressors, and oxidative stress is considered to be the main of those. To this end, many studies discover antioxidants as protective anti-aging agents. In the current study, we examined the effects of...

Descripción completa

Detalles Bibliográficos
Autores principales: Kornienko, Ju. S., Smirnova, I. S., Pugovkina, N. A., Ivanova, Ju. S., Shilina, M. A., Grinchuk, T. M., Shatrova, A. N., Aksenov, N. D., Zenin, V. V., Nikolsky, N. N., Lyublinskaya, O. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361906/
https://www.ncbi.nlm.nih.gov/pubmed/30718685
http://dx.doi.org/10.1038/s41598-018-37972-y
Descripción
Sumario:Stress-induced premature senescence program is known to be activated in cells by various genotoxic stressors, and oxidative stress is considered to be the main of those. To this end, many studies discover antioxidants as protective anti-aging agents. In the current study, we examined the effects of different antioxidants (Tempol, resveratrol, NAC, DPI) on the mesenchymal stem cells maintained in normal physiological conditions. We used high, but non-cytotoxic antioxidant doses which are widely used in laboratory practice to protect cells from oxidative damage. We show that these substances induce reversible block of cell proliferation and do not cause any genotoxic effects when applied to the quiescent cells. However, the same doses of the same substances, when applied to the proliferating cells, can induce irreversible cell cycle arrest, DNA strand breaks accumulation and DNA damage response activation. As a consequence, antioxidant-induced DNA damage results in the stress-induced premature senescence program activation. We conclude that high doses of antioxidants, when applied to the proliferating cells that maintain physiological levels of reactive oxygen species, can cause DNA damage and induce premature senescence which suggests to re-estimate believed unconditional anti-aging antioxidant properties.