Cargando…

The effect of ILs as co-salts in electrolytes for high voltage supercapacitors

Ionic liquids (ILs) which have electrical stability are attractive materials to enhance the potential window of electrolyte. According to the potential window is extended, available voltage for supercapacitor is broaden. In this study, the addition of ILs which is 1-ethyl-3-methylimidazolium tetrafl...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Ha-Na, Jang, Su-Jin, Kang, Yun Chan, Roh, Kwang Chul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361913/
https://www.ncbi.nlm.nih.gov/pubmed/30718616
http://dx.doi.org/10.1038/s41598-018-37322-y
Descripción
Sumario:Ionic liquids (ILs) which have electrical stability are attractive materials to enhance the potential window of electrolyte. According to the potential window is extended, available voltage for supercapacitor is broaden. In this study, the addition of ILs which is 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and 1-ethyl-3-methylimidazolium bis(trifluoromethylesulfonyl) imide (EMITFSI) as co-salts, to a supercapacitor electrolyte increases the ionic conductivity and stability of it due to inhibition of electrolyte decomposition. As a result, the electrochemical stability potential windows (ESPWs) of supercapacitor is improved and the supercapacitor exhibited increased cycling stability. The loss of specific capacitance upon addition of 7 wt% EMIBF4 or EMITFSI to the electrolyte was 2.5% and 8.7%, respectively, after 10,000 cycles at 3.5 V, compared to the specific capacitance of the initial discharge.