Cargando…
Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes
We introduce cross-trait penalized regression (CTPR), a powerful and practical approach for multi-trait polygenic risk prediction in large cohorts. Specifically, we propose a novel cross-trait penalty function with the Lasso and the minimax concave penalty (MCP) to incorporate the shared genetic eff...
Autores principales: | Chung, Wonil, Chen, Jun, Turman, Constance, Lindstrom, Sara, Zhu, Zhaozhong, Loh, Po-Ru, Kraft, Peter, Liang, Liming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361917/ https://www.ncbi.nlm.nih.gov/pubmed/30718517 http://dx.doi.org/10.1038/s41467-019-08535-0 |
Ejemplares similares
-
A genome-wide cross trait analysis from UK Biobank highlights the
shared genetic architecture of asthma and allergic diseases
por: Zhu, Zhaozhong, et al.
Publicado: (2018) -
Efficient Implementation of Penalized Regression for Genetic Risk Prediction
por: Privé, Florian, et al.
Publicado: (2019) -
Penalized regression approaches to testing for quantitative trait-rare variant association
por: Kim, Sunkyung, et al.
Publicado: (2014) -
Using penalized regression to predict phenotype from SNP data
por: Cherlin, Svetlana, et al.
Publicado: (2018) -
Differentially penalized regression to predict agronomic traits from metabolites and markers in wheat
por: Ward, Jane, et al.
Publicado: (2015)