Cargando…
A universal dimensionality function for the fractal dimensions of Laplacian growth
Laplacian growth, associated to the diffusion-limited aggregation (DLA) model or the more general dielectric-breakdown model (DBM), is a fundamental out-of-equilibrium process that generates structures with characteristic fractal/non-fractal morphologies. However, despite diverse numerical and theor...
Autores principales: | Nicolás-Carlock, J. R., Carrillo-Estrada, J. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362037/ https://www.ncbi.nlm.nih.gov/pubmed/30718754 http://dx.doi.org/10.1038/s41598-018-38084-3 |
Ejemplares similares
-
Universal fractality of morphological transitions in stochastic growth processes
por: Nicolás-Carlock, J. R., et al.
Publicado: (2017) -
Analysis on fractals, laplacians on self-similar sets, noncommutative geometry and spectral dimensions
por: Lapidus, M L
Publicado: (1995) -
Fractality à la carte: a general particle aggregation model
por: Nicolás-Carlock, J. R., et al.
Publicado: (2016) -
Network efficiency of spatial systems with fractal morphology: a geometric graphs approach
por: Flores-Ortega, A. C., et al.
Publicado: (2023) -
Regularized Laplacian determinants of self-similar fractals
por: Chen, Joe P., et al.
Publicado: (2017)