Cargando…
Completely scrambled memory for quantum superposition
Although constructing a quantum computation device with multiple qubits is arguably a difficult task, several seconds of coherence time with tens of thousands of quantum particles has been demonstrated with a trapped atomic ensemble. As a practical application, a security-enhanced quantum state memo...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362093/ https://www.ncbi.nlm.nih.gov/pubmed/30718785 http://dx.doi.org/10.1038/s41598-018-37772-4 |
Sumario: | Although constructing a quantum computation device with multiple qubits is arguably a difficult task, several seconds of coherence time with tens of thousands of quantum particles has been demonstrated with a trapped atomic ensemble. As a practical application, a security-enhanced quantum state memory using atoms has been demonstrated. It was shown that the quantum superposition preserved in an atomic ensemble was scrambled and faithfully descrambled; however, the scrambled phase ambiguity remained at 50%. To overcome this problem, we propose and demonstrate a scheme that achieves 100% phase ambiguity without introducing an extra Ramsey interferometer. Moreover, this scheme can be used as a direct application to keep the choice between two values secret without falsification. |
---|