Cargando…

Patterns of cardiovascular variability after long-term sino-aortic denervation in unanesthetized adult rats

Baroreflex dysfunction is a diffuse chronic condition that is expected to be followed by a profound loss of organization of BP and HR variability. Nevertheless, long-term effects of baroreflex withdrawal are still debated. Aim of our work was to study BP and HR changes long term after sino-aortic de...

Descripción completa

Detalles Bibliográficos
Autores principales: Radaelli, Alberto, Mancia, Giuseppe, De Carlini, Caterina, Soriano, Francesco, Castiglioni, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362124/
https://www.ncbi.nlm.nih.gov/pubmed/30718760
http://dx.doi.org/10.1038/s41598-018-37970-0
Descripción
Sumario:Baroreflex dysfunction is a diffuse chronic condition that is expected to be followed by a profound loss of organization of BP and HR variability. Nevertheless, long-term effects of baroreflex withdrawal are still debated. Aim of our work was to study BP and HR changes long term after sino-aortic denervation (SAD). Inter-beat-interval (IBI) and intra-arterial BP were recorded beat-by-beat in 43 Wistar-Kyoto rats (Controls, n = 33; SAD rats, n = 10). Power spectra were calculated in controls and in SAD rats within three days and at seven months from denervation. Compared to controls, chronic SAD rats showed 1) similar mean BP (control vs SAD: 95 ± 16 vs 87 ± 22 mmHg) and IBI (171 ± 22 vs 181 ± 15 ms) values, 2) dramatically higher values of BP variance (12 ± 2 vs 64 ± 2 mmHg(2), p < 0.01) and of ultra- (ULF) and very-low-frequency (VLF) BP oscillations, 3) dramatically higher values of IBI variability (24 ± 2 vs 71 ± 4 ms(2), p < 0.01) and of ULF-IBI oscillations that were synchronized with BP oscillations. Chronic SAD rats reveal a marked change in the pattern of cardiovascular variability characterized by the appearance of synchronized slower oscillations of BP and HR. The cardiovascular system, therefore, retains a high level of organization despite the absence of a reflex control mechanism.