Cargando…
Baryon decays to purely baryonic final states
The LHCb collaboration has presented first experimental evidence that spin-carrying matter and antimatter differ. The study looked at four-body decays of the [Formula: see text] baryon. Differences in the behaviour of matter and antimatter are associated with the non-invariance of fundamental intera...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362132/ https://www.ncbi.nlm.nih.gov/pubmed/30718706 http://dx.doi.org/10.1038/s41598-018-37743-9 |
Sumario: | The LHCb collaboration has presented first experimental evidence that spin-carrying matter and antimatter differ. The study looked at four-body decays of the [Formula: see text] baryon. Differences in the behaviour of matter and antimatter are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as CP violation. We discuss purely baryonic decay processes, i.e. decay processes involving only spin-carrying particles. They are yet unexplored elementary processes. Their study opens a new chapter of flavour physics in the route towards a better understanding of CP violation. It may help us understand the observed matter and antimatter asymmetry of the Universe. |
---|