Cargando…
Cassia grandis Lf nanodispersion is a hypoglycemic product with a potent α-glucosidase and pancreatic lipase inhibitor effect
PURPOSE: This study aimed to evaluate the hypoglycemic effect, antioxidant, α-glucosidase and lipase inhibitory activity, and the cytotoxicity of the Cassia grandis nanodispersion (CgND). METHODS: The hypoglycemic effect was evaluated in alloxan-induced diabetic mice. The particle size, polydispersi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362179/ https://www.ncbi.nlm.nih.gov/pubmed/30766429 http://dx.doi.org/10.1016/j.jsps.2018.10.003 |
Sumario: | PURPOSE: This study aimed to evaluate the hypoglycemic effect, antioxidant, α-glucosidase and lipase inhibitory activity, and the cytotoxicity of the Cassia grandis nanodispersion (CgND). METHODS: The hypoglycemic effect was evaluated in alloxan-induced diabetic mice. The particle size, polydispersion index, ζ-potential, and conductivity, as well as the drug-loaded content, were monitored in shelf-live, along a year. The delivery profile was evaluated in simulated intestinal fluids at pH 6.5 and 7.4. The antioxidant effect was evaluated as DPPH and ABTS inhibition. The murine α-glucosidase inhibitory activity and the lipase-inhibitory effect were evaluated in vitro. Cytotoxicity was evaluated by the Alamar blue test. RESULTS: CgND remained stable for a year in shelf conditions. The hypoglycemic effect in a dose of 10 mg/kg was not statistically different from glibenclamide 25 mg/kg. Nanoparticles released 100% of extract in 120 min at pH 6.5 and 7.4. Nanodispersion exhibited a potent α-glucosidase and lipase-inhibitory effect with IC(50) of 3.96 and 0.58 µg/mL, respectively. A strong antioxidant activity against DPPH (IC(50) 0.65 µg/mL) and ABTS (0.48 µg/mL) was also observed. The hypoglycemic effect could occur, at least in part, via antioxidant and α-glucosidase inhibition. CgND is non-cytotoxic in MRC-5 line cell. This nanodispersion is a promising nanotechnological product that could be used in pharmaceuticals for the treatment of Type II diabetes and related complications as obesity. |
---|