Cargando…
Use of hidden Markov capture–recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations
Estimating the relative abundance (prevalence) of different population segments is a key step in addressing fundamental research questions in ecology, evolution, and conservation. The raw percentage of individuals in the sample (naive prevalence) is generally used for this purpose, but it is likely...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362442/ https://www.ncbi.nlm.nih.gov/pubmed/30766665 http://dx.doi.org/10.1002/ece3.4819 |
_version_ | 1783392918954835968 |
---|---|
author | Santostasi, Nina Luisa Ciucci, Paolo Caniglia, Romolo Fabbri, Elena Molinari, Luigi Reggioni, Willy Gimenez, Olivier |
author_facet | Santostasi, Nina Luisa Ciucci, Paolo Caniglia, Romolo Fabbri, Elena Molinari, Luigi Reggioni, Willy Gimenez, Olivier |
author_sort | Santostasi, Nina Luisa |
collection | PubMed |
description | Estimating the relative abundance (prevalence) of different population segments is a key step in addressing fundamental research questions in ecology, evolution, and conservation. The raw percentage of individuals in the sample (naive prevalence) is generally used for this purpose, but it is likely to be subject to two main sources of bias. First, the detectability of individuals is ignored; second, classification errors may occur due to some inherent limits of the diagnostic methods. We developed a hidden Markov (also known as multievent) capture–recapture model to estimate prevalence in free‐ranging populations accounting for imperfect detectability and uncertainty in individual's classification. We carried out a simulation study to compare naive and model‐based estimates of prevalence and assess the performance of our model under different sampling scenarios. We then illustrate our method with a real‐world case study of estimating the prevalence of wolf (Canis lupus) and dog (Canis lupus familiaris) hybrids in a wolf population in northern Italy. We showed that the prevalence of hybrids could be estimated while accounting for both detectability and classification uncertainty. Model‐based prevalence consistently had better performance than naive prevalence in the presence of differential detectability and assignment probability and was unbiased for sampling scenarios with high detectability. We also showed that ignoring detectability and uncertainty in the wolf case study would lead to underestimating the prevalence of hybrids. Our results underline the importance of a model‐based approach to obtain unbiased estimates of prevalence of different population segments. Our model can be adapted to any taxa, and it can be used to estimate absolute abundance and prevalence in a variety of cases involving imperfect detection and uncertainty in classification of individuals (e.g., sex ratio, proportion of breeders, and prevalence of infected individuals). |
format | Online Article Text |
id | pubmed-6362442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63624422019-02-14 Use of hidden Markov capture–recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations Santostasi, Nina Luisa Ciucci, Paolo Caniglia, Romolo Fabbri, Elena Molinari, Luigi Reggioni, Willy Gimenez, Olivier Ecol Evol Original Research Estimating the relative abundance (prevalence) of different population segments is a key step in addressing fundamental research questions in ecology, evolution, and conservation. The raw percentage of individuals in the sample (naive prevalence) is generally used for this purpose, but it is likely to be subject to two main sources of bias. First, the detectability of individuals is ignored; second, classification errors may occur due to some inherent limits of the diagnostic methods. We developed a hidden Markov (also known as multievent) capture–recapture model to estimate prevalence in free‐ranging populations accounting for imperfect detectability and uncertainty in individual's classification. We carried out a simulation study to compare naive and model‐based estimates of prevalence and assess the performance of our model under different sampling scenarios. We then illustrate our method with a real‐world case study of estimating the prevalence of wolf (Canis lupus) and dog (Canis lupus familiaris) hybrids in a wolf population in northern Italy. We showed that the prevalence of hybrids could be estimated while accounting for both detectability and classification uncertainty. Model‐based prevalence consistently had better performance than naive prevalence in the presence of differential detectability and assignment probability and was unbiased for sampling scenarios with high detectability. We also showed that ignoring detectability and uncertainty in the wolf case study would lead to underestimating the prevalence of hybrids. Our results underline the importance of a model‐based approach to obtain unbiased estimates of prevalence of different population segments. Our model can be adapted to any taxa, and it can be used to estimate absolute abundance and prevalence in a variety of cases involving imperfect detection and uncertainty in classification of individuals (e.g., sex ratio, proportion of breeders, and prevalence of infected individuals). John Wiley and Sons Inc. 2019-02-05 /pmc/articles/PMC6362442/ /pubmed/30766665 http://dx.doi.org/10.1002/ece3.4819 Text en © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Santostasi, Nina Luisa Ciucci, Paolo Caniglia, Romolo Fabbri, Elena Molinari, Luigi Reggioni, Willy Gimenez, Olivier Use of hidden Markov capture–recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations |
title | Use of hidden Markov capture–recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations |
title_full | Use of hidden Markov capture–recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations |
title_fullStr | Use of hidden Markov capture–recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations |
title_full_unstemmed | Use of hidden Markov capture–recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations |
title_short | Use of hidden Markov capture–recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations |
title_sort | use of hidden markov capture–recapture models to estimate abundance in the presence of uncertainty: application to the estimation of prevalence of hybrids in animal populations |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362442/ https://www.ncbi.nlm.nih.gov/pubmed/30766665 http://dx.doi.org/10.1002/ece3.4819 |
work_keys_str_mv | AT santostasininaluisa useofhiddenmarkovcapturerecapturemodelstoestimateabundanceinthepresenceofuncertaintyapplicationtotheestimationofprevalenceofhybridsinanimalpopulations AT ciuccipaolo useofhiddenmarkovcapturerecapturemodelstoestimateabundanceinthepresenceofuncertaintyapplicationtotheestimationofprevalenceofhybridsinanimalpopulations AT canigliaromolo useofhiddenmarkovcapturerecapturemodelstoestimateabundanceinthepresenceofuncertaintyapplicationtotheestimationofprevalenceofhybridsinanimalpopulations AT fabbrielena useofhiddenmarkovcapturerecapturemodelstoestimateabundanceinthepresenceofuncertaintyapplicationtotheestimationofprevalenceofhybridsinanimalpopulations AT molinariluigi useofhiddenmarkovcapturerecapturemodelstoestimateabundanceinthepresenceofuncertaintyapplicationtotheestimationofprevalenceofhybridsinanimalpopulations AT reggioniwilly useofhiddenmarkovcapturerecapturemodelstoestimateabundanceinthepresenceofuncertaintyapplicationtotheestimationofprevalenceofhybridsinanimalpopulations AT gimenezolivier useofhiddenmarkovcapturerecapturemodelstoestimateabundanceinthepresenceofuncertaintyapplicationtotheestimationofprevalenceofhybridsinanimalpopulations |