Cargando…

Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway

Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-re...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Dong hyuck, Yang, Jinzeng, Kim, Yong Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362869/
https://www.ncbi.nlm.nih.gov/pubmed/30805561
http://dx.doi.org/10.1016/j.bbrep.2018.12.009
_version_ 1783393012239302656
author Choi, Dong hyuck
Yang, Jinzeng
Kim, Yong Soo
author_facet Choi, Dong hyuck
Yang, Jinzeng
Kim, Yong Soo
author_sort Choi, Dong hyuck
collection PubMed
description Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression.
format Online
Article
Text
id pubmed-6362869
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-63628692019-02-25 Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway Choi, Dong hyuck Yang, Jinzeng Kim, Yong Soo Biochem Biophys Rep Research Article Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Elsevier 2019-01-21 /pmc/articles/PMC6362869/ /pubmed/30805561 http://dx.doi.org/10.1016/j.bbrep.2018.12.009 Text en http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Choi, Dong hyuck
Yang, Jinzeng
Kim, Yong Soo
Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway
title Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway
title_full Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway
title_fullStr Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway
title_full_unstemmed Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway
title_short Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway
title_sort rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the akt/mtor pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362869/
https://www.ncbi.nlm.nih.gov/pubmed/30805561
http://dx.doi.org/10.1016/j.bbrep.2018.12.009
work_keys_str_mv AT choidonghyuck rapamycinsuppressespostnatalmusclehypertrophyinducedbymyostatininhibitionaccompaniedbytranscriptionalsuppressionoftheaktmtorpathway
AT yangjinzeng rapamycinsuppressespostnatalmusclehypertrophyinducedbymyostatininhibitionaccompaniedbytranscriptionalsuppressionoftheaktmtorpathway
AT kimyongsoo rapamycinsuppressespostnatalmusclehypertrophyinducedbymyostatininhibitionaccompaniedbytranscriptionalsuppressionoftheaktmtorpathway