Cargando…
An efficient and long-acting local anesthetic: ropivacaine-loaded lipid-polymer hybrid nanoparticles for the control of pain
PURPOSE: Local anesthetics are used clinically for the control of pain following operation (including gastrointestinal surgery) or for the management of other acute and chronic pain. This study aimed to develop a kind of lipid-polymer hybrid nanoparticles (LPNs), which were constructed using poly(et...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362966/ https://www.ncbi.nlm.nih.gov/pubmed/30774342 http://dx.doi.org/10.2147/IJN.S190164 |
Sumario: | PURPOSE: Local anesthetics are used clinically for the control of pain following operation (including gastrointestinal surgery) or for the management of other acute and chronic pain. This study aimed to develop a kind of lipid-polymer hybrid nanoparticles (LPNs), which were constructed using poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) as the hydrophilic lipid shell and poly-ε-caprolactone (PCL) as the hydrophobic polymeric core. METHODS: Ropivacaine (RPV) was entrapped in the LPNs (RPV-LPNs) and the physicochemical and biochemical properties such as size, zeta potential, drug release, and cytotoxicity were studied. The long-lasting effects and safety aspects of the LPNs were evaluated in vitro and in vivo. RESULTS: The particle size and zeta potential of RPV-LPNs were 112.3±2.6 nm and −33.2±3.2 mV, with an entrapment efficiency (EE) of 90.2%±3.7%. Ex vivo permeation efficiency of LPNs was better than the drug solution. The RPV-LPNs exhibited a long-lasting in vivo anesthesia effect in both rats and mice. CONCLUSION: Considering the low cytotoxicity, the LPNs prepared here could be used as an efficient local anesthetic for the control of pain. |
---|