Cargando…

Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis

Micronutrient deficiencies affect a large part of the world’s population. These deficiencies are mostly due to the consumption of grains with insufficient content of iron (Fe) or zinc (Zn). Both de novo uptake by roots and recycling from leaves may provide seeds with nutrients. Autophagy, which is a...

Descripción completa

Detalles Bibliográficos
Autores principales: Pottier, Mathieu, Dumont, Jean, Masclaux-Daubresse, Céline, Thomine, Sébastien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363094/
https://www.ncbi.nlm.nih.gov/pubmed/30395253
http://dx.doi.org/10.1093/jxb/ery388
Descripción
Sumario:Micronutrient deficiencies affect a large part of the world’s population. These deficiencies are mostly due to the consumption of grains with insufficient content of iron (Fe) or zinc (Zn). Both de novo uptake by roots and recycling from leaves may provide seeds with nutrients. Autophagy, which is a conserved mechanism for nutrient recycling in eukaryotes, was shown to be involved in nitrogen remobilization to seeds. Here, we have investigated the role of this mechanism in micronutrient translocation to seeds. We found that Arabidopsis thaliana plants impaired in autophagy display defects in nutrient remobilization to seeds. In the atg5-1 mutant, which is completely defective in autophagy, the efficiency of Fe translocation from vegetative organs to seeds was severely decreased even when Fe was provided during seed formation. Combining atg5-1 with the sid2 mutation that counteracts premature senescence associated with autophagy deficiency and using (57)Fe pulse labeling, we propose a two-step mechanism in which Fe taken up de novo during seed formation is first accumulated in vegetative organs and subsequently remobilized to seeds. Finally, we show that translocation of Zn and manganese (Mn) to seeds is also dependent on autophagy. Fine-tuning autophagy during seed formation opens up new possibilities to improve micronutrient remobilization to seeds.