Cargando…
Meiotic chromosome movement: what’s lamin got to do with it?
Active meiotic chromosome movements are a universally conserved feature. They occur at the early stages of prophase of the first meiotic division and support the chromosome pairing process by (1) efficiently installing the synaptonemal complex between homologous chromosomes, (2) discouraging inadver...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363277/ https://www.ncbi.nlm.nih.gov/pubmed/30676220 http://dx.doi.org/10.1080/19491034.2019.1572413 |
_version_ | 1783393085530570752 |
---|---|
author | Paouneskou, Dimitra Jantsch, Verena |
author_facet | Paouneskou, Dimitra Jantsch, Verena |
author_sort | Paouneskou, Dimitra |
collection | PubMed |
description | Active meiotic chromosome movements are a universally conserved feature. They occur at the early stages of prophase of the first meiotic division and support the chromosome pairing process by (1) efficiently installing the synaptonemal complex between homologous chromosomes, (2) discouraging inadvertent chromosome interactions and (3) bringing homologous chromosomes into proximity. Chromosome movements are driven by forces in the cytoplasm, which are passed on to chromosome ends attached to the nuclear periphery by nuclear-membrane-spanning protein modules. In this extra view, we highlight our recent studies into the role of the nuclear lamina during this process to emphasize that it is a highly conserved structure in metazoans. The nuclear lamina forms a rigid proteinaceous network that underlies the inner nuclear membrane to provide stability to the nucleus. Misdemeanors of the nuclear lamina during meiosis has deleterious consequences for the viability and health of the offspring, highlighting the importance of a functional nuclear lamina during this cell cycle stage. Abbreviations: DSB: DNA double strand break; LEM: LAP2, Emerin, MAN1; LINC: LInker of the Nucleoskeleton and Cytoskeleton; RPM: rapid prophase movement; SUN/KASH: Sad1p, UNC-84/Klarsicht, ANC-1, Syne Homology |
format | Online Article Text |
id | pubmed-6363277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-63632772019-02-15 Meiotic chromosome movement: what’s lamin got to do with it? Paouneskou, Dimitra Jantsch, Verena Nucleus Extra View Active meiotic chromosome movements are a universally conserved feature. They occur at the early stages of prophase of the first meiotic division and support the chromosome pairing process by (1) efficiently installing the synaptonemal complex between homologous chromosomes, (2) discouraging inadvertent chromosome interactions and (3) bringing homologous chromosomes into proximity. Chromosome movements are driven by forces in the cytoplasm, which are passed on to chromosome ends attached to the nuclear periphery by nuclear-membrane-spanning protein modules. In this extra view, we highlight our recent studies into the role of the nuclear lamina during this process to emphasize that it is a highly conserved structure in metazoans. The nuclear lamina forms a rigid proteinaceous network that underlies the inner nuclear membrane to provide stability to the nucleus. Misdemeanors of the nuclear lamina during meiosis has deleterious consequences for the viability and health of the offspring, highlighting the importance of a functional nuclear lamina during this cell cycle stage. Abbreviations: DSB: DNA double strand break; LEM: LAP2, Emerin, MAN1; LINC: LInker of the Nucleoskeleton and Cytoskeleton; RPM: rapid prophase movement; SUN/KASH: Sad1p, UNC-84/Klarsicht, ANC-1, Syne Homology Taylor & Francis 2019-01-24 /pmc/articles/PMC6363277/ /pubmed/30676220 http://dx.doi.org/10.1080/19491034.2019.1572413 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Extra View Paouneskou, Dimitra Jantsch, Verena Meiotic chromosome movement: what’s lamin got to do with it? |
title | Meiotic chromosome movement: what’s lamin got to do with it? |
title_full | Meiotic chromosome movement: what’s lamin got to do with it? |
title_fullStr | Meiotic chromosome movement: what’s lamin got to do with it? |
title_full_unstemmed | Meiotic chromosome movement: what’s lamin got to do with it? |
title_short | Meiotic chromosome movement: what’s lamin got to do with it? |
title_sort | meiotic chromosome movement: what’s lamin got to do with it? |
topic | Extra View |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363277/ https://www.ncbi.nlm.nih.gov/pubmed/30676220 http://dx.doi.org/10.1080/19491034.2019.1572413 |
work_keys_str_mv | AT paouneskoudimitra meioticchromosomemovementwhatslamingottodowithit AT jantschverena meioticchromosomemovementwhatslamingottodowithit |