Cargando…
Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience
Identifying low-dimensional features that describe large-scale neural recordings is a major challenge in neuroscience. Repeated temporal patterns (sequences) are thought to be a salient feature of neural dynamics, but are not succinctly captured by traditional dimensionality reduction techniques. He...
Autores principales: | Mackevicius, Emily L, Bahle, Andrew H, Williams, Alex H, Gu, Shijie, Denisenko, Natalia I, Goldman, Mark S, Fee, Michale S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363393/ https://www.ncbi.nlm.nih.gov/pubmed/30719973 http://dx.doi.org/10.7554/eLife.38471 |
Ejemplares similares
-
Self-organization of songbird neural sequences during social isolation
por: Mackevicius, Emily L, et al.
Publicado: (2023) -
An avian cortical circuit for chunking tutor song syllables into simple vocal-motor units
por: Mackevicius, Emily L., et al.
Publicado: (2020) -
Growth and splitting of neural sequences in songbird vocal development
por: Okubo, Tatsuo S., et al.
Publicado: (2015) -
A role for descending auditory cortical projections in songbird vocal learning
por: Mandelblat-Cerf, Yael, et al.
Publicado: (2014) -
Correction: A role for descending auditory cortical projections in songbird vocal learning
por: Mandelblat-Cerf, Yael, et al.
Publicado: (2014)