Cargando…
Structure-efficiency relationship of photoinduced electron transfer-triggered nitric oxide releasers
Spatiotemporally controllable nitric oxide (NO) releasers are required for biological studies and as candidate therapeutic agents. Here, we investigate the structure-efficiency relationship of a series of photoinduced electron transfer-triggered NO releasers based on our reported yellowish-green lig...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363743/ https://www.ncbi.nlm.nih.gov/pubmed/30723285 http://dx.doi.org/10.1038/s41598-018-38252-5 |
Sumario: | Spatiotemporally controllable nitric oxide (NO) releasers are required for biological studies and as candidate therapeutic agents. Here, we investigate the structure-efficiency relationship of a series of photoinduced electron transfer-triggered NO releasers based on our reported yellowish-green light-controllable NO releaser, NO-Rosa. The distance between the NO-releasing N-nitrosoaminophenol moiety and the rosamine antenna moiety was critical for efficient NO release. Notably, substitution at the phenolic hydroxyl group blocked NO release. We synthesized NO-Rosa-Gal bearing D-galactose (Gal) at this location, and showed that hydrolysis by β-galactosidase restored the photoresponse. This represents proof-of-concept of a strategy for highly specific control of NO release by using a double-lock system involving both enzymatic reactivation and photo-control. |
---|