Cargando…
On the conditional distribution of a multivariate Normal given a transformation – the linear case
We show that the orthogonal projection operator onto the range of the adjoint [Formula: see text] of a linear operator T can be represented as UT, where U is an invertible linear operator. Given a Normal random vector Y and a linear operator T, we use this representation to obtain a linear operator...
Autores principales: | Majumdar, Rajeshwari, Majumdar, Suman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363920/ https://www.ncbi.nlm.nih.gov/pubmed/30766931 http://dx.doi.org/10.1016/j.heliyon.2019.e01136 |
Ejemplares similares
-
Linear and graphical models: for the multivariate complex normal distribution
por: Andersen, H H, et al.
Publicado: (1995) -
The multivariate normal distribution
por: Tong, Yung Liang
Publicado: (1990) -
Analysing linear multivariate pattern transformations in neuroimaging data
por: Basti, Alessio, et al.
Publicado: (2019) -
Entropy-Regularized Optimal Transport on Multivariate Normal and q-normal Distributions
por: Tong, Qijun, et al.
Publicado: (2021) -
Linear multivariable systems
por: Wolovich, W A
Publicado: (1974)