Cargando…

Cloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor

Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a...

Descripción completa

Detalles Bibliográficos
Autores principales: Haghir, Shahrzad, Alemzadeh, Abbas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shiraz University 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363940/
https://www.ncbi.nlm.nih.gov/pubmed/30788378
http://dx.doi.org/10.22099/mbrc.2018.30339.1336
Descripción
Sumario:Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Triticum turgidum L.) and called TaERF6. Its cDNA was synthesized, sequenced and compared with genomic sequence to figure out intron and exon regions and determine coding sequence region. The length of TdERF1 gene was 1939 bp and cDNA was 1065 bp including two exons, the first one 259 bp and the second one 806 bp separated by a 874 bp intron with a 111 bp 5'-UTR (untranslated region) and 401 bp 3'-UTR. TaERF6 encodes a 353 amino acids protein with nearly 99% identity to TdERF1. Hydrophobic cluster analysis revealed an N-terminal hydrophobic domain contains a highly conserved motif with the consensus sequence of M [C/L/Y] [G/R] [G/R/P] [A/G/V/L/R] [I/L/R/S/P/Q] [L/I/R/H] and hydrophobic clusters in AP2/ERF domain of which tends to form -sheet. Three monopartite nuclear localization signals also identified in TaERF6 that play important role in getting back into the nucleus. The results showed several putative phosphorylation sites in TaERF6 that a motif from residues 246 to 266, the CMVII-4 motif, was predicted to phosphorylate by different kinase proteins and play important roles in TaERF6 function. Phylogenetic analysis showed 7 clusters (I to VII) and 10 subclusters according to their relatedness in Poaceae family.