Cargando…

KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks

Keratoconus (KTC) is a noninflammatory disorder characterized by progressive thinning, corneal deformation, and scarring of the cornea. The pathological mechanisms of this condition have been investigated for a long time. In recent years, this disease has come to the attention of many research cente...

Descripción completa

Detalles Bibliográficos
Autores principales: Lavric, Alexandru, Valentin, Popa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364125/
https://www.ncbi.nlm.nih.gov/pubmed/30809255
http://dx.doi.org/10.1155/2019/8162567
Descripción
Sumario:Keratoconus (KTC) is a noninflammatory disorder characterized by progressive thinning, corneal deformation, and scarring of the cornea. The pathological mechanisms of this condition have been investigated for a long time. In recent years, this disease has come to the attention of many research centers because the number of people diagnosed with keratoconus is on the rise. In this context, solutions that facilitate both the diagnostic and treatment options are quickly needed. The main contribution of this paper is the implementation of an algorithm that is able to determine whether an eye is affected or not by keratoconus. The KeratoDetect algorithm analyzes the corneal topography of the eye using a convolutional neural network (CNN) that is able to extract and learn the features of a keratoconus eye. The results show that the KeratoDetect algorithm ensures a high level of performance, obtaining an accuracy of 99.33% on the data test set. KeratoDetect can assist the ophthalmologist in rapid screening of its patients, thus reducing diagnostic errors and facilitating treatment.