Cargando…
VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
Single-cell RNA sequencing (scRNA-seq) is a powerful technique to analyze the transcriptomic heterogeneities at the single cell level. It is an important step for studying cell sub-populations and lineages, with an effective low-dimensional representation and visualization of the original scRNA-Seq...
Autores principales: | Wang, Dongfang, Gu, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364131/ https://www.ncbi.nlm.nih.gov/pubmed/30576740 http://dx.doi.org/10.1016/j.gpb.2018.08.003 |
Ejemplares similares
-
Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data
por: Liu, Wei, et al.
Publicado: (2022) -
Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
por: Townes, F. William, et al.
Publicado: (2019) -
Similarity-assisted variational autoencoder for nonlinear dimension reduction with application to single-cell RNA sequencing data
por: Kim, Gwangwoo, et al.
Publicado: (2023) -
Using neural networks for reducing the dimensions of single-cell RNA-Seq data
por: Lin, Chieh, et al.
Publicado: (2017) -
A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
por: Li, Gaoyang, et al.
Publicado: (2022)