Cargando…

MicroRNA-708-5p affects proliferation and invasion of osteosarcoma cells by targeting URGCP

Osteosarcoma is an aggressive cancer of the skeletal system which remains a challenge for the current therapeutic strategies due to unclear etiology and molecular mechanisms of pathogenesis. The current study aimed to determine the expression levels, role and molecular mechanism of microRNA-708-5p (...

Descripción completa

Detalles Bibliográficos
Autores principales: Sui, Cong, Liu, Debao, Hu, Yong, Zhang, Linlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364217/
https://www.ncbi.nlm.nih.gov/pubmed/30783484
http://dx.doi.org/10.3892/etm.2019.7171
Descripción
Sumario:Osteosarcoma is an aggressive cancer of the skeletal system which remains a challenge for the current therapeutic strategies due to unclear etiology and molecular mechanisms of pathogenesis. The current study aimed to determine the expression levels, role and molecular mechanism of microRNA-708-5p (miR-708-5p) in the development of osteosarcoma. The expression level of miR-708-5p was detected using reverse transcription-quantitative polymerase chain reaction. miR-708-5p was overexpressed in SaOS-2 cells using miR-708-5p mimics. Cell viability, apoptosis, migration and invasion were determined using Cell Counting kit-8 assay, flow cytometry, wound healing and transwell assays, respectively. The results indicated that miR-708-5p was significantly downregulated in osteosarcoma tissues and cells, and its overexpression significantly inhibited cell viability, invasion and migration and induced apoptosis of SaOS-2 cells. Furthermore, the present results indicated that miR-708-5p directly targeted the 3′-untranslated region of up-regulator of cell proliferation (URGCP) and negatively regulated its expression in SaOS-2 cells. Taken together, the current study suggested that miR-708-5p may inhibit the growth and invasion of osteosarcoma cells via regulating the URGCP/NF-κB signaling pathway. Further research on these molecules in osteosarcoma may provide novel insights into the target therapy for this disease.