Cargando…
Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation
Diabetic retinopathy (DR) is one of the most common causes of visual impairment. Automatic detection of hard exudates (HE) from retinal photographs is an important step for detection of DR. However, most of existing algorithms for HE detection are complex and inefficient. We have developed and evalu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364257/ https://www.ncbi.nlm.nih.gov/pubmed/30809539 http://dx.doi.org/10.1155/2019/3926930 |
_version_ | 1783393232673046528 |
---|---|
author | Long, Shengchun Huang, Xiaoxiao Chen, Zhiqing Pardhan, Shahina Zheng, Dingchang |
author_facet | Long, Shengchun Huang, Xiaoxiao Chen, Zhiqing Pardhan, Shahina Zheng, Dingchang |
author_sort | Long, Shengchun |
collection | PubMed |
description | Diabetic retinopathy (DR) is one of the most common causes of visual impairment. Automatic detection of hard exudates (HE) from retinal photographs is an important step for detection of DR. However, most of existing algorithms for HE detection are complex and inefficient. We have developed and evaluated an automatic retinal image processing algorithm for HE detection using dynamic threshold and fuzzy C-means clustering (FCM) followed by support vector machine (SVM) for classification. The proposed algorithm consisted of four main stages: (i) imaging preprocessing; (ii) localization of optic disc (OD); (iii) determination of candidate HE using dynamic threshold in combination with global threshold based on FCM; and (iv) extraction of eight texture features from the candidate HE region, which were then fed into an SVM classifier for automatic HE classification. The proposed algorithm was trained and cross-validated (10 fold) on a publicly available e-ophtha EX database (47 images) on pixel-level, achieving the overall average sensitivity, PPV, and F-score of 76.5%, 82.7%, and 76.7%. It was tested on another independent DIARETDB1 database (89 images) with the overall average sensitivity, specificity, and accuracy of 97.5%, 97.8%, and 97.7%, respectively. In summary, the satisfactory evaluation results on both retinal imaging databases demonstrated the effectiveness of our proposed algorithm for automatic HE detection, by using dynamic threshold and FCM followed by an SVM for classification. |
format | Online Article Text |
id | pubmed-6364257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-63642572019-02-26 Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation Long, Shengchun Huang, Xiaoxiao Chen, Zhiqing Pardhan, Shahina Zheng, Dingchang Biomed Res Int Research Article Diabetic retinopathy (DR) is one of the most common causes of visual impairment. Automatic detection of hard exudates (HE) from retinal photographs is an important step for detection of DR. However, most of existing algorithms for HE detection are complex and inefficient. We have developed and evaluated an automatic retinal image processing algorithm for HE detection using dynamic threshold and fuzzy C-means clustering (FCM) followed by support vector machine (SVM) for classification. The proposed algorithm consisted of four main stages: (i) imaging preprocessing; (ii) localization of optic disc (OD); (iii) determination of candidate HE using dynamic threshold in combination with global threshold based on FCM; and (iv) extraction of eight texture features from the candidate HE region, which were then fed into an SVM classifier for automatic HE classification. The proposed algorithm was trained and cross-validated (10 fold) on a publicly available e-ophtha EX database (47 images) on pixel-level, achieving the overall average sensitivity, PPV, and F-score of 76.5%, 82.7%, and 76.7%. It was tested on another independent DIARETDB1 database (89 images) with the overall average sensitivity, specificity, and accuracy of 97.5%, 97.8%, and 97.7%, respectively. In summary, the satisfactory evaluation results on both retinal imaging databases demonstrated the effectiveness of our proposed algorithm for automatic HE detection, by using dynamic threshold and FCM followed by an SVM for classification. Hindawi 2019-01-23 /pmc/articles/PMC6364257/ /pubmed/30809539 http://dx.doi.org/10.1155/2019/3926930 Text en Copyright © 2019 Shengchun Long et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Long, Shengchun Huang, Xiaoxiao Chen, Zhiqing Pardhan, Shahina Zheng, Dingchang Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation |
title | Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation |
title_full | Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation |
title_fullStr | Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation |
title_full_unstemmed | Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation |
title_short | Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation |
title_sort | automatic detection of hard exudates in color retinal images using dynamic threshold and svm classification: algorithm development and evaluation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364257/ https://www.ncbi.nlm.nih.gov/pubmed/30809539 http://dx.doi.org/10.1155/2019/3926930 |
work_keys_str_mv | AT longshengchun automaticdetectionofhardexudatesincolorretinalimagesusingdynamicthresholdandsvmclassificationalgorithmdevelopmentandevaluation AT huangxiaoxiao automaticdetectionofhardexudatesincolorretinalimagesusingdynamicthresholdandsvmclassificationalgorithmdevelopmentandevaluation AT chenzhiqing automaticdetectionofhardexudatesincolorretinalimagesusingdynamicthresholdandsvmclassificationalgorithmdevelopmentandevaluation AT pardhanshahina automaticdetectionofhardexudatesincolorretinalimagesusingdynamicthresholdandsvmclassificationalgorithmdevelopmentandevaluation AT zhengdingchang automaticdetectionofhardexudatesincolorretinalimagesusingdynamicthresholdandsvmclassificationalgorithmdevelopmentandevaluation |