Cargando…
DeepPVP: phenotype-based prioritization of causative variants using deep learning
BACKGROUND: Prioritization of variants in personal genomic data is a major challenge. Recently, computational methods that rely on comparing phenotype similarity have shown to be useful to identify causative variants. In these methods, pathogenicity prediction is combined with a semantic similarity...
Autores principales: | Boudellioua, Imane, Kulmanov, Maxat, Schofield, Paul N., Gkoutos, Georgios V., Hoehndorf, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364462/ https://www.ncbi.nlm.nih.gov/pubmed/30727941 http://dx.doi.org/10.1186/s12859-019-2633-8 |
Ejemplares similares
-
OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants
por: Boudellioua, Imane, et al.
Publicado: (2018) -
Semantic prioritization of novel causative genomic variants
por: Boudellioua, Imane, et al.
Publicado: (2017) -
Ontology-based validation and identification of regulatory phenotypes
por: Kulmanov, Maxat, et al.
Publicado: (2018) -
DeepPheno: Predicting single gene loss-of-function phenotypes using an ontology-aware hierarchical classifier
por: Kulmanov, Maxat, et al.
Publicado: (2020) -
DeepGOZero: improving protein function prediction from sequence and zero-shot learning based on ontology axioms
por: Kulmanov, Maxat, et al.
Publicado: (2022)