Cargando…

Large-scale micron-order 3D surface correlative chemical imaging of ancient Roman concrete

There has been significant progress in recent years aimed at the development of new analytical techniques for investigating structure-function relationships in hierarchically ordered materials. Inspired by these technological advances and the potential for applying these approaches to the study of c...

Descripción completa

Detalles Bibliográficos
Autores principales: Maragh, Janille M., Weaver, James C., Masic, Admir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364879/
https://www.ncbi.nlm.nih.gov/pubmed/30726243
http://dx.doi.org/10.1371/journal.pone.0210710
Descripción
Sumario:There has been significant progress in recent years aimed at the development of new analytical techniques for investigating structure-function relationships in hierarchically ordered materials. Inspired by these technological advances and the potential for applying these approaches to the study of construction materials from antiquity, we present a new set of high throughput characterization tools for investigating ancient Roman concrete, which like many ancient construction materials, exhibits compositional heterogeneity and structural complexity across multiple length scales. The detailed characterization of ancient Roman concrete at each of these scales is important for understanding its mechanics, resilience, degradation pathways, and for making informed decisions regarding its preservation. In this multi-scale characterization investigation of ancient Roman concrete samples collected from the ancient city of Privernum (Priverno, Italy), cm-scale maps with micron-scale features were collected using multi-detector energy dispersive spectroscopy (EDS) and confocal Raman microscopy on both polished cross-sections and topographically complex fracture surfaces to extract both bulk and surface information. Raman spectroscopy was used for chemical profiling and phase characterization, and data collected using EDS was used to construct ternary diagrams to supplement our understanding of the different phases. We also present a methodology for correlating data collected using different techniques on the same sample at different orientations, which shows remarkable potential in using complementary characterization approaches in the study of heterogeneous materials with complex surface topographies.