Cargando…

Salmon increase forest bird abundance and diversity

Resource subsidies across ecosystems can have strong and unforeseen ecological impacts. Marine-derived nutrients from Pacific salmon (Onchorhycus spp.) can be transferred to streams and riparian forests through diverse food web pathways, fertilizing forests and increasing invertebrate abundance, whi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagner, Marlene A., Reynolds, John D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364887/
https://www.ncbi.nlm.nih.gov/pubmed/30726212
http://dx.doi.org/10.1371/journal.pone.0210031
Descripción
Sumario:Resource subsidies across ecosystems can have strong and unforeseen ecological impacts. Marine-derived nutrients from Pacific salmon (Onchorhycus spp.) can be transferred to streams and riparian forests through diverse food web pathways, fertilizing forests and increasing invertebrate abundance, which may in turn affect breeding birds. We quantified the influence of salmon on the abundance and composition of songbird communities across a wide range of salmon-spawning biomass on 14 streams along a remote coastal region of British Columbia, Canada. Point-count data spanning two years were combined with salmon biomass and 13 environmental covariates in riparian forests to test for correlates with bird abundance, foraging guilds, individual species, and avian diversity. We show that bird abundance and diversity increase with salmon biomass and that watershed size and forest composition are less important predictors. This work provides new evidence for the importance of salmon to terrestrial ecosystems and information that can inform ecosystem-based management.