Cargando…
Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
During the diagnostic workup of lung adenocarcinomas (LAC), pathologists evaluate distinct histological tumor growth patterns. The percentage of each pattern on multiple slides bears prognostic significance. To assist with the quantification of growth patterns, we constructed a pipeline equipped wit...
Autores principales: | Gertych, Arkadiusz, Swiderska-Chadaj, Zaneta, Ma, Zhaoxuan, Ing, Nathan, Markiewicz, Tomasz, Cierniak, Szczepan, Salemi, Hootan, Guzman, Samuel, Walts, Ann E., Knudsen, Beatrice S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365499/ https://www.ncbi.nlm.nih.gov/pubmed/30728398 http://dx.doi.org/10.1038/s41598-018-37638-9 |
Ejemplares similares
-
Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer
por: Swiderska-Chadaj, Zaneta, et al.
Publicado: (2020) -
Artificial intelligence to detect MYC translocation in slides of diffuse large B-cell lymphoma
por: Swiderska-Chadaj, Zaneta, et al.
Publicado: (2020) -
Content-based analysis of Ki-67 stained meningioma specimens for automatic hot-spot selection
por: Swiderska-Chadaj, Zaneta, et al.
Publicado: (2016) -
Localization of spleen and kidney organs from CT scans based on classification of slices in rotational views
por: Les, Tomasz, et al.
Publicado: (2023) -
Data integration from pathology slides for quantitative imaging of multiple cell types within the tumor immune cell infiltrate
por: Ma, Zhaoxuan, et al.
Publicado: (2017)