Cargando…
Role of nutrient concentrations and water movement on diatom’s productivity in culture
Microalgal growth maximization is becoming a duty for enhancing the biotechnological fate of these photosynthetic microorganisms. This study, based on an extensive set of data, aims to revisit diatom’s cultivation in laboratory with the objective to increase growth rate and biomass production. We in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365584/ https://www.ncbi.nlm.nih.gov/pubmed/30728371 http://dx.doi.org/10.1038/s41598-018-37611-6 |
Sumario: | Microalgal growth maximization is becoming a duty for enhancing the biotechnological fate of these photosynthetic microorganisms. This study, based on an extensive set of data, aims to revisit diatom’s cultivation in laboratory with the objective to increase growth rate and biomass production. We investigated the growth ability and resource requirements of the coastal diatom Skeletonema marinoi Sarno & Zingone grown in laboratory in the conventional f/2 medium with aeration and in two modified conditions: (i) the same medium with water movement inside and (ii) an enriched medium with the same water movement. Results revealed that, by doubling the concentration of phosphate, silicate, microelements and vitamins, growth rate was successfully enhanced, preventing phosphate or silicate limitation in the f/2 culture medium. Yet, irrespective of the media (f/2 or enriched one), water movement induced an increase of growth efficiency compared to aeration, affecting nutrients’ requirement and consumption by diatoms. This study is an important step for enhancing diatom biomass production, reducing its cost, as required in the blue biotechnology context. |
---|