Cargando…
Analysis and Predictability of Drought In Northwest Africa Using Optical and Microwave Satellite Remote Sensing Products
In a context of high stress on water resources and agricultural production at the global level, together with climate change marked by an increase in the frequency of these events, drought is considered to be a strong threat both socially and economically. The Mediterranean region is a hot spot of c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365590/ https://www.ncbi.nlm.nih.gov/pubmed/30728426 http://dx.doi.org/10.1038/s41598-018-37911-x |
Sumario: | In a context of high stress on water resources and agricultural production at the global level, together with climate change marked by an increase in the frequency of these events, drought is considered to be a strong threat both socially and economically. The Mediterranean region is a hot spot of climate change; it is also characterized by a scarcity of water resources that places intense pressure on agricultural productivity. This article analyzes the potential for using multiple remote sensing tools in the quantification and predictability of drought in Northwest Africa. Three satellite products are considered: the Normalized Difference Vegetation Index (NDVI), Soil Moisture Index (SWI), and Land Surface Temperature (LST). A discussion of the variability of these products and their inter-correlation is presented, illustrating a generally high consistency between them. Statistical anomaly indices are then computed and a drought severity mapping is presented. The results illustrate in particular a high percentage of dry conditions in the region studied during the last ten years (2007–2017). Finally, we propose the use of the analog statistical approach to identify similar evolutions of the three variables in the past. Although this technique is not a forecast, it provides a strong indication of the plausible future trajectory of a given hydrological season. |
---|