Cargando…

Environmental fitness heterogeneity in the Moran process

Many mathematical models of evolution assume that all individuals experience the same environment. Here, we study the Moran process in heterogeneous environments. The population is of finite size with two competing types, which are exposed to a fixed number of environmental conditions. Reproductive...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaveh, Kamran, McAvoy, Alex, Nowak, Martin A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366185/
https://www.ncbi.nlm.nih.gov/pubmed/30800394
http://dx.doi.org/10.1098/rsos.181661
Descripción
Sumario:Many mathematical models of evolution assume that all individuals experience the same environment. Here, we study the Moran process in heterogeneous environments. The population is of finite size with two competing types, which are exposed to a fixed number of environmental conditions. Reproductive rate is determined by both the type and the environment. We first calculate the condition for selection to favour the mutant relative to the resident wild-type. In large populations, the mutant is favoured if and only if the mutant’s spatial average reproductive rate exceeds that of the resident. But environmental heterogeneity elucidates an interesting asymmetry between the mutant and the resident. Specifically, mutant heterogeneity suppresses its fixation probability; if this heterogeneity is strong enough, it can even completely offset the effects of selection (including in large populations). By contrast, resident heterogeneity has no effect on a mutant’s fixation probability in large populations and can amplify it in small populations.