Cargando…

Enhanced growth and differentiation of myoblast cells grown on E-jet 3D printed platforms

BACKGROUND: Skeletal muscle tissue engineering often involves the prefabrication of muscle tissues in vitro by differentiation and maturation of muscle precursor cells on a platform which provides an environment that facilitates the myogenic differentiation of the seeded cells. METHODS: Poly lactic-...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Haoxiang, Zhong, Juchang, Wang, Jian, Huang, Ruiying, Qiao, Xiaoyin, Wang, Honghui, Tan, Zhikai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366362/
https://www.ncbi.nlm.nih.gov/pubmed/30787608
http://dx.doi.org/10.2147/IJN.S193624
Descripción
Sumario:BACKGROUND: Skeletal muscle tissue engineering often involves the prefabrication of muscle tissues in vitro by differentiation and maturation of muscle precursor cells on a platform which provides an environment that facilitates the myogenic differentiation of the seeded cells. METHODS: Poly lactic-co-glycolic acid (PLGA) 3D printed scaffolds, which simulate the highly complex structure of extracellular matrix (ECM), were fabricated by E-jet 3D printing in this study. The scaffolds were used as platforms, providing environment that aids in growth, differentiation and other properties of C2C12 myoblast cells. RESULTS: The C2C12 myoblast cells grown on the PLGA 3D printed platforms had enhanced cell adhesion and proliferation. Moreover, the platforms were able to induce myogenic differentiation of the myoblast cells by promoting the formation of myotubes and up-regulating the expressions of myogenic genes (MyHC and MyOG). CONCLUSION: The fabricated 3D printed platforms have excellent biocompatibility, thereby can potentially be used as functional cell culture platforms in skeletal tissue engineering and regeneration.