Cargando…

Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting

The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Langer, Ellen M., Allen-Petersen, Brittany L., King, Shelby M., Kendsersky, Nicholas D., Turnidge, Megan A., Kuziel, Genevra M., Riggers, Rachelle, Samatham, Ravi, Amery, Taylor S., Jacques, Steven L., Sheppard, Brett C., Korkola, James E., Muschler, John L., Thibault, Guillaume, Chang, Young Hwan, Gray, Joe W., Presnell, Sharon C., Nguyen, Deborah G., Sears, Rosalie C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366459/
https://www.ncbi.nlm.nih.gov/pubmed/30650355
http://dx.doi.org/10.1016/j.celrep.2018.12.090
_version_ 1783393629387096064
author Langer, Ellen M.
Allen-Petersen, Brittany L.
King, Shelby M.
Kendsersky, Nicholas D.
Turnidge, Megan A.
Kuziel, Genevra M.
Riggers, Rachelle
Samatham, Ravi
Amery, Taylor S.
Jacques, Steven L.
Sheppard, Brett C.
Korkola, James E.
Muschler, John L.
Thibault, Guillaume
Chang, Young Hwan
Gray, Joe W.
Presnell, Sharon C.
Nguyen, Deborah G.
Sears, Rosalie C.
author_facet Langer, Ellen M.
Allen-Petersen, Brittany L.
King, Shelby M.
Kendsersky, Nicholas D.
Turnidge, Megan A.
Kuziel, Genevra M.
Riggers, Rachelle
Samatham, Ravi
Amery, Taylor S.
Jacques, Steven L.
Sheppard, Brett C.
Korkola, James E.
Muschler, John L.
Thibault, Guillaume
Chang, Young Hwan
Gray, Joe W.
Presnell, Sharon C.
Nguyen, Deborah G.
Sears, Rosalie C.
author_sort Langer, Ellen M.
collection PubMed
description The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting could improve in vitro models by incorporating multiple cell types into scaffold-free tumor tissues with defined architecture. We generated tumor tissues from distinct subtypes of breast or pancreatic cancer in relevant microenvironments and demonstrate that this technique can model patient-specific tumors by using primary patient tissue. We assess intrinsic, extrinsic, and spatial tumorigenic phenotypes in bioprinted tissues and find that cellular proliferation, extracellular matrix deposition, and cellular migration are altered in response to extrinsic signals or therapies. Together, this work demonstrates that multi-cell-type bioprinted tissues can recapitulate aspects of in vivo neoplastic tissues and provide a manipulable system for the interrogation of multiple tumorigenic endpoints in the context of distinct tumor microenvironments.
format Online
Article
Text
id pubmed-6366459
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-63664592019-02-07 Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting Langer, Ellen M. Allen-Petersen, Brittany L. King, Shelby M. Kendsersky, Nicholas D. Turnidge, Megan A. Kuziel, Genevra M. Riggers, Rachelle Samatham, Ravi Amery, Taylor S. Jacques, Steven L. Sheppard, Brett C. Korkola, James E. Muschler, John L. Thibault, Guillaume Chang, Young Hwan Gray, Joe W. Presnell, Sharon C. Nguyen, Deborah G. Sears, Rosalie C. Cell Rep Article The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting could improve in vitro models by incorporating multiple cell types into scaffold-free tumor tissues with defined architecture. We generated tumor tissues from distinct subtypes of breast or pancreatic cancer in relevant microenvironments and demonstrate that this technique can model patient-specific tumors by using primary patient tissue. We assess intrinsic, extrinsic, and spatial tumorigenic phenotypes in bioprinted tissues and find that cellular proliferation, extracellular matrix deposition, and cellular migration are altered in response to extrinsic signals or therapies. Together, this work demonstrates that multi-cell-type bioprinted tissues can recapitulate aspects of in vivo neoplastic tissues and provide a manipulable system for the interrogation of multiple tumorigenic endpoints in the context of distinct tumor microenvironments. 2019-01-15 /pmc/articles/PMC6366459/ /pubmed/30650355 http://dx.doi.org/10.1016/j.celrep.2018.12.090 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Langer, Ellen M.
Allen-Petersen, Brittany L.
King, Shelby M.
Kendsersky, Nicholas D.
Turnidge, Megan A.
Kuziel, Genevra M.
Riggers, Rachelle
Samatham, Ravi
Amery, Taylor S.
Jacques, Steven L.
Sheppard, Brett C.
Korkola, James E.
Muschler, John L.
Thibault, Guillaume
Chang, Young Hwan
Gray, Joe W.
Presnell, Sharon C.
Nguyen, Deborah G.
Sears, Rosalie C.
Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting
title Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting
title_full Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting
title_fullStr Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting
title_full_unstemmed Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting
title_short Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting
title_sort modeling tumor phenotypes in vitro with three-dimensional bioprinting
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366459/
https://www.ncbi.nlm.nih.gov/pubmed/30650355
http://dx.doi.org/10.1016/j.celrep.2018.12.090
work_keys_str_mv AT langerellenm modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT allenpetersenbrittanyl modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT kingshelbym modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT kendserskynicholasd modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT turnidgemegana modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT kuzielgenevram modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT riggersrachelle modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT samathamravi modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT amerytaylors modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT jacquesstevenl modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT sheppardbrettc modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT korkolajamese modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT muschlerjohnl modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT thibaultguillaume modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT changyounghwan modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT grayjoew modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT presnellsharonc modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT nguyendeborahg modelingtumorphenotypesinvitrowiththreedimensionalbioprinting
AT searsrosaliec modelingtumorphenotypesinvitrowiththreedimensionalbioprinting