Cargando…
Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting
The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting cou...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366459/ https://www.ncbi.nlm.nih.gov/pubmed/30650355 http://dx.doi.org/10.1016/j.celrep.2018.12.090 |
_version_ | 1783393629387096064 |
---|---|
author | Langer, Ellen M. Allen-Petersen, Brittany L. King, Shelby M. Kendsersky, Nicholas D. Turnidge, Megan A. Kuziel, Genevra M. Riggers, Rachelle Samatham, Ravi Amery, Taylor S. Jacques, Steven L. Sheppard, Brett C. Korkola, James E. Muschler, John L. Thibault, Guillaume Chang, Young Hwan Gray, Joe W. Presnell, Sharon C. Nguyen, Deborah G. Sears, Rosalie C. |
author_facet | Langer, Ellen M. Allen-Petersen, Brittany L. King, Shelby M. Kendsersky, Nicholas D. Turnidge, Megan A. Kuziel, Genevra M. Riggers, Rachelle Samatham, Ravi Amery, Taylor S. Jacques, Steven L. Sheppard, Brett C. Korkola, James E. Muschler, John L. Thibault, Guillaume Chang, Young Hwan Gray, Joe W. Presnell, Sharon C. Nguyen, Deborah G. Sears, Rosalie C. |
author_sort | Langer, Ellen M. |
collection | PubMed |
description | The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting could improve in vitro models by incorporating multiple cell types into scaffold-free tumor tissues with defined architecture. We generated tumor tissues from distinct subtypes of breast or pancreatic cancer in relevant microenvironments and demonstrate that this technique can model patient-specific tumors by using primary patient tissue. We assess intrinsic, extrinsic, and spatial tumorigenic phenotypes in bioprinted tissues and find that cellular proliferation, extracellular matrix deposition, and cellular migration are altered in response to extrinsic signals or therapies. Together, this work demonstrates that multi-cell-type bioprinted tissues can recapitulate aspects of in vivo neoplastic tissues and provide a manipulable system for the interrogation of multiple tumorigenic endpoints in the context of distinct tumor microenvironments. |
format | Online Article Text |
id | pubmed-6366459 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-63664592019-02-07 Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting Langer, Ellen M. Allen-Petersen, Brittany L. King, Shelby M. Kendsersky, Nicholas D. Turnidge, Megan A. Kuziel, Genevra M. Riggers, Rachelle Samatham, Ravi Amery, Taylor S. Jacques, Steven L. Sheppard, Brett C. Korkola, James E. Muschler, John L. Thibault, Guillaume Chang, Young Hwan Gray, Joe W. Presnell, Sharon C. Nguyen, Deborah G. Sears, Rosalie C. Cell Rep Article The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting could improve in vitro models by incorporating multiple cell types into scaffold-free tumor tissues with defined architecture. We generated tumor tissues from distinct subtypes of breast or pancreatic cancer in relevant microenvironments and demonstrate that this technique can model patient-specific tumors by using primary patient tissue. We assess intrinsic, extrinsic, and spatial tumorigenic phenotypes in bioprinted tissues and find that cellular proliferation, extracellular matrix deposition, and cellular migration are altered in response to extrinsic signals or therapies. Together, this work demonstrates that multi-cell-type bioprinted tissues can recapitulate aspects of in vivo neoplastic tissues and provide a manipulable system for the interrogation of multiple tumorigenic endpoints in the context of distinct tumor microenvironments. 2019-01-15 /pmc/articles/PMC6366459/ /pubmed/30650355 http://dx.doi.org/10.1016/j.celrep.2018.12.090 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Langer, Ellen M. Allen-Petersen, Brittany L. King, Shelby M. Kendsersky, Nicholas D. Turnidge, Megan A. Kuziel, Genevra M. Riggers, Rachelle Samatham, Ravi Amery, Taylor S. Jacques, Steven L. Sheppard, Brett C. Korkola, James E. Muschler, John L. Thibault, Guillaume Chang, Young Hwan Gray, Joe W. Presnell, Sharon C. Nguyen, Deborah G. Sears, Rosalie C. Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting |
title | Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting |
title_full | Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting |
title_fullStr | Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting |
title_full_unstemmed | Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting |
title_short | Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting |
title_sort | modeling tumor phenotypes in vitro with three-dimensional bioprinting |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366459/ https://www.ncbi.nlm.nih.gov/pubmed/30650355 http://dx.doi.org/10.1016/j.celrep.2018.12.090 |
work_keys_str_mv | AT langerellenm modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT allenpetersenbrittanyl modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT kingshelbym modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT kendserskynicholasd modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT turnidgemegana modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT kuzielgenevram modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT riggersrachelle modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT samathamravi modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT amerytaylors modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT jacquesstevenl modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT sheppardbrettc modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT korkolajamese modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT muschlerjohnl modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT thibaultguillaume modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT changyounghwan modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT grayjoew modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT presnellsharonc modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT nguyendeborahg modelingtumorphenotypesinvitrowiththreedimensionalbioprinting AT searsrosaliec modelingtumorphenotypesinvitrowiththreedimensionalbioprinting |