Cargando…
A mandatory role of nuclear PAK4-LIFR axis in breast-to-bone metastasis of ERα-positive breast cancer cells
The mechanism of estrogen receptor alpha (ERα)-positive breast cancer-associated bone metastasis is poorly understood. In this article, we report that nuclear p21-activated kinase 4 (nPAK4) is a novel repressor of ERα-mediated transactivation in a 17β-estradiol (E2)-dependent manner and promotes PAK...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367215/ https://www.ncbi.nlm.nih.gov/pubmed/30177834 http://dx.doi.org/10.1038/s41388-018-0456-0 |
Sumario: | The mechanism of estrogen receptor alpha (ERα)-positive breast cancer-associated bone metastasis is poorly understood. In this article, we report that nuclear p21-activated kinase 4 (nPAK4) is a novel repressor of ERα-mediated transactivation in a 17β-estradiol (E2)-dependent manner and promotes PAK4–ERα axis-mediated bone metastasis by targeting leukemia inhibitory factor receptor (LIFR) in ERα-positive breast cancer. An evaluation of clinical breast cancer samples revealed that nPAK4 is linked to ERα expression and appears to be associated with a poor prognosis in bone metastatic breast cancer. PAK4 bound and co-translocated with ERα from the cytoplasm to the nucleus upon stimulation with E2. nPAK4 enhanced the invasive potential of ERα-positive breast cancer cells in vitro and promoted breast cancer metastasis in vivo. Mechanistically, nPAK4 promoted the metastasis of ERα-positive breast cancer cells by targeting LIFR, a bone metastasis suppressor. Strikingly, the nuclear accumulation of PAK4 might promote aggressive phenotypes, highlighting nPAK4 as a novel predictive biomarker for ERα-positive breast cancer bone metastasis. |
---|