Cargando…
Functional random forest with applications in dose-response predictions
Drug sensitivity prediction for individual tumors is a significant challenge in personalized medicine. Current modeling approaches consider prediction of a single metric of the drug response curve such as AUC or IC(50). However, the single summary metric of a dose-response curve fails to provide the...
Autores principales: | Rahman, Raziur, Dhruba, Saugato Rahman, Ghosh, Souparno, Pal, Ranadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367407/ https://www.ncbi.nlm.nih.gov/pubmed/30733524 http://dx.doi.org/10.1038/s41598-018-38231-w |
Ejemplares similares
-
Recursive model for dose-time responses in pharmacological studies
por: Dhruba, Saugato Rahman, et al.
Publicado: (2019) -
Application of transfer learning for cancer drug sensitivity prediction
por: Dhruba, Saugato Rahman, et al.
Publicado: (2018) -
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2016) -
Heterogeneity Aware Random Forest for Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2017) -
Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks
por: Bazgir, Omid, et al.
Publicado: (2020)