Cargando…

Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency

To reveal how cells exit human pluripotency, we designed a CRISPR-Cas9 screen exploiting the metabolic and epigenetic differences between naïve and primed pluripotent cells. We identify the tumor suppressor, Folliculin(FLCN) as a critical gene required for the exit from human pluripotency. Here we s...

Descripción completa

Detalles Bibliográficos
Autores principales: Mathieu, J., Detraux, D., Kuppers, D., Wang, Y., Cavanaugh, C., Sidhu, S., Levy, S., Robitaille, A. M., Ferreccio, A., Bottorff, T., McAlister, A., Somasundaram, L., Artoni, F., Battle, S., Hawkins, R. D., Moon, R. T., Ware, C. B., Paddison, P. J., Ruohola-Baker, H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367455/
https://www.ncbi.nlm.nih.gov/pubmed/30733432
http://dx.doi.org/10.1038/s41467-018-08020-0
_version_ 1783393803734876160
author Mathieu, J.
Detraux, D.
Kuppers, D.
Wang, Y.
Cavanaugh, C.
Sidhu, S.
Levy, S.
Robitaille, A. M.
Ferreccio, A.
Bottorff, T.
McAlister, A.
Somasundaram, L.
Artoni, F.
Battle, S.
Hawkins, R. D.
Moon, R. T.
Ware, C. B.
Paddison, P. J.
Ruohola-Baker, H.
author_facet Mathieu, J.
Detraux, D.
Kuppers, D.
Wang, Y.
Cavanaugh, C.
Sidhu, S.
Levy, S.
Robitaille, A. M.
Ferreccio, A.
Bottorff, T.
McAlister, A.
Somasundaram, L.
Artoni, F.
Battle, S.
Hawkins, R. D.
Moon, R. T.
Ware, C. B.
Paddison, P. J.
Ruohola-Baker, H.
author_sort Mathieu, J.
collection PubMed
description To reveal how cells exit human pluripotency, we designed a CRISPR-Cas9 screen exploiting the metabolic and epigenetic differences between naïve and primed pluripotent cells. We identify the tumor suppressor, Folliculin(FLCN) as a critical gene required for the exit from human pluripotency. Here we show that FLCN Knock-out (KO) hESCs maintain the naïve pluripotent state but cannot exit the state since the critical transcription factor TFE3 remains active in the nucleus. TFE3 targets up-regulated in FLCN KO exit assay are members of Wnt pathway and ESRRB. Treatment of FLCN KO hESC with a Wnt inhibitor, but not ESRRB/FLCN double mutant, rescues the cells, allowing the exit from the naïve state. Using co-immunoprecipitation and mass spectrometry analysis we identify unique FLCN binding partners. The interactions of FLCN with components of the mTOR pathway (mTORC1 and mTORC2) reveal a mechanism of FLCN function during exit from naïve pluripotency.
format Online
Article
Text
id pubmed-6367455
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63674552019-02-11 Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency Mathieu, J. Detraux, D. Kuppers, D. Wang, Y. Cavanaugh, C. Sidhu, S. Levy, S. Robitaille, A. M. Ferreccio, A. Bottorff, T. McAlister, A. Somasundaram, L. Artoni, F. Battle, S. Hawkins, R. D. Moon, R. T. Ware, C. B. Paddison, P. J. Ruohola-Baker, H. Nat Commun Article To reveal how cells exit human pluripotency, we designed a CRISPR-Cas9 screen exploiting the metabolic and epigenetic differences between naïve and primed pluripotent cells. We identify the tumor suppressor, Folliculin(FLCN) as a critical gene required for the exit from human pluripotency. Here we show that FLCN Knock-out (KO) hESCs maintain the naïve pluripotent state but cannot exit the state since the critical transcription factor TFE3 remains active in the nucleus. TFE3 targets up-regulated in FLCN KO exit assay are members of Wnt pathway and ESRRB. Treatment of FLCN KO hESC with a Wnt inhibitor, but not ESRRB/FLCN double mutant, rescues the cells, allowing the exit from the naïve state. Using co-immunoprecipitation and mass spectrometry analysis we identify unique FLCN binding partners. The interactions of FLCN with components of the mTOR pathway (mTORC1 and mTORC2) reveal a mechanism of FLCN function during exit from naïve pluripotency. Nature Publishing Group UK 2019-02-07 /pmc/articles/PMC6367455/ /pubmed/30733432 http://dx.doi.org/10.1038/s41467-018-08020-0 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Mathieu, J.
Detraux, D.
Kuppers, D.
Wang, Y.
Cavanaugh, C.
Sidhu, S.
Levy, S.
Robitaille, A. M.
Ferreccio, A.
Bottorff, T.
McAlister, A.
Somasundaram, L.
Artoni, F.
Battle, S.
Hawkins, R. D.
Moon, R. T.
Ware, C. B.
Paddison, P. J.
Ruohola-Baker, H.
Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency
title Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency
title_full Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency
title_fullStr Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency
title_full_unstemmed Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency
title_short Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency
title_sort folliculin regulates mtorc1/2 and wnt pathways in early human pluripotency
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367455/
https://www.ncbi.nlm.nih.gov/pubmed/30733432
http://dx.doi.org/10.1038/s41467-018-08020-0
work_keys_str_mv AT mathieuj folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT detrauxd folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT kuppersd folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT wangy folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT cavanaughc folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT sidhus folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT levys folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT robitailleam folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT ferreccioa folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT bottorfft folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT mcalistera folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT somasundaraml folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT artonif folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT battles folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT hawkinsrd folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT moonrt folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT warecb folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT paddisonpj folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency
AT ruoholabakerh folliculinregulatesmtorc12andwntpathwaysinearlyhumanpluripotency