Cargando…

Target-site mutations (AChE-G119S and kdr) in Guangxi Anopheles sinensis populations along the China-Vietnam border

BACKGROUND: In South Asia, the epidemiology of malaria is complex, and transmission mainly occurs in remote areas near international borders. Vector control has been implemented as a key strategy in malaria prevention for decades. A rising threat to the efficacy of vector control efforts is the deve...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Chan, Feng, Xiangyang, Liu, Nian, Li, Mei, Qiu, Xinghui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367790/
https://www.ncbi.nlm.nih.gov/pubmed/30732643
http://dx.doi.org/10.1186/s13071-019-3298-x
Descripción
Sumario:BACKGROUND: In South Asia, the epidemiology of malaria is complex, and transmission mainly occurs in remote areas near international borders. Vector control has been implemented as a key strategy in malaria prevention for decades. A rising threat to the efficacy of vector control efforts is the development of insecticide resistance, thus it is important to monitor the type and frequency of insecticide resistant alleles in the disease vectors such as An. sinensis along the China-Vietnam border. Such information is needed to synthesize effective malaria vector control strategies. METHODS: A total of 208 adults of An. sinensis, collected from seven sites in southwest Guangxi along the China-Vietnam border, were inspected for the resistance-conferring G119S mutation in acetylcholinesterase (AChE) by PCR-RFLP (polymerase chain reaction restriction fragment length polymorphism) and kdr mutations in the voltage-gated sodium channel (VGSC) by sequencing. In addition, the evolutionary origin of An. sinensis vgsc gene haplotypes was analyzed using Network 5.0. RESULTS: The frequencies of mutant 119S of AChE were between 0.61–0.85 in the seven An. sinensis populations. No susceptible homozygote (119GG) was detected in three of the seven sites (DXEC, LZSK and FCGDX). Very low frequencies of kdr (0.00–0.01) were detected in the seven populations, with most individuals being susceptible homozygote (1014LL). The 1014F mutation was detected only in the southeast part (FCGDX) at a low frequency of 0.03. The 1014S mutation was distributed in six of the seven populations with frequencies ranging from 0.04 to 0.08, but absent in JXXW. Diverse haplotypes of 1014L and 1014S were found in An. sinensis along the China-Vietnam border, while only one 1014F haplotype was detected in this study. Consistent with a previous report, resistant 1014S haplotypes did not have a single origin. CONCLUSIONS: The G119S mutation of AChE was present at high frequencies (0.61–0.85) in the An. sinensis populations along the China-Vietnam border, suggesting that the vector control authorities should be cautious when considering carbamates and organophosphates as chemicals for vector control. The low frequencies (0.00–0.11) of kdr in these populations suggest that pyrethroids remain suitable for use against An. sinensis in these regions.