Cargando…

A concentrated array of copper porphyrin candidate qubits

Synthetic chemistry offers a pathway to realize atomically precise arrays of qubits, the smallest unit of a quantum information science system. We harnessed framework chemistry to create an array of qubit candidates, featuring one qubit every 13.6 Å, by synthesizing the new copper(ii) variant of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Chung-Jui, Krzyaniak, Matthew D., Fataftah, Majed S., Wasielewski, Michael R., Freedman, Danna E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368214/
https://www.ncbi.nlm.nih.gov/pubmed/30842834
http://dx.doi.org/10.1039/c8sc04435j
Descripción
Sumario:Synthetic chemistry offers a pathway to realize atomically precise arrays of qubits, the smallest unit of a quantum information science system. We harnessed framework chemistry to create an array of qubit candidates, featuring one qubit every 13.6 Å, by synthesizing the new copper(ii) variant of the porphyrinic metal–organic framework PCN-224. We subjected the framework to pulse-electron paramagnetic resonance (EPR) measurements, establishing spin coherence at temperatures up to 80 K within a fully spin concentrated framework. Observation of Rabi oscillations further support the viability of the qubits within these arrays. To interrogate the spin dynamics of qubit arrays, we investigated spin–lattice relaxation, T(1), through a combination of pulse-EPR and alternating current (ac) magnetic susceptibility measurements. These data revealed distinct vibrational environments within the frameworks that contribute to spin dynamics. The aggregate results establish a pathway for a synthetic approach to create spatially precise networks of qubits.