Cargando…
Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
There has been a recent surge of interest in using machine learning across chemical space in order to predict properties of molecules or design molecules and materials with the desired properties. Most of this work relies on defining clever feature representations, in which the chemical graph struct...
Autores principales: | Winter, Robin, Montanari, Floriane, Noé, Frank, Clevert, Djork-Arné |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368215/ https://www.ncbi.nlm.nih.gov/pubmed/30842833 http://dx.doi.org/10.1039/c8sc04175j |
Ejemplares similares
-
Efficient multi-objective molecular optimization in a continuous latent space
por: Winter, Robin, et al.
Publicado: (2019) -
Img2Mol – accurate SMILES recognition from molecular graphical depictions
por: Clevert, Djork-Arné, et al.
Publicado: (2021) -
Neuraldecipher – reverse-engineering extended-connectivity fingerprints (ECFPs) to their molecular structures
por: Le, Tuan, et al.
Publicado: (2020) -
Unsupervised Representation Learning for Proteochemometric Modeling
por: Kim, Paul T., et al.
Publicado: (2021) -
Modeling Physico-Chemical ADMET Endpoints with Multitask Graph Convolutional Networks
por: Montanari, Floriane, et al.
Publicado: (2019)