Cargando…
Changes in brain Glx in depressed bipolar patients treated with lamotrigine: A proton MRS study
BACKGROUND: Lamotrigine is a useful treatment in bipolar depression but requires several weeks of dose titration before its clinical effects can be assessed. Animal experimental studies suggest that lamotrigine lowers glutamate release. The aim of the current study was to assess the effect of lamotr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier/North-Holland Biomedical Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368663/ https://www.ncbi.nlm.nih.gov/pubmed/30599363 http://dx.doi.org/10.1016/j.jad.2018.12.092 |
_version_ | 1783394032609656832 |
---|---|
author | Godlewska, Beata R. Emir, Uzay E. Masaki, Charles Bargiotas, Theodoras Cowen, Philip J |
author_facet | Godlewska, Beata R. Emir, Uzay E. Masaki, Charles Bargiotas, Theodoras Cowen, Philip J |
author_sort | Godlewska, Beata R. |
collection | PubMed |
description | BACKGROUND: Lamotrigine is a useful treatment in bipolar depression but requires several weeks of dose titration before its clinical effects can be assessed. Animal experimental studies suggest that lamotrigine lowers glutamate release. The aim of the current study was to assess the effect of lamotrigine on brain glutamate in depressed bipolar patients and to determine whether baseline glutamate could be used to predict clinical response. METHODS: We studied 21 bipolar patients who received lamotrigine treatment for a current episode of depression. Before starting lamotrigine and after 10–12 weeks treatment, patients underwent proton magnetic resonance spectroscopy (MRS) scanning at 3 Tesla where levels of glutamate (measured as Glx) were determined in anterior cingulate cortex (ACC). RESULTS: Overall, lamotrigine treatment had no significant effect on Glx levels in ACC. However, in patients who responded clinically to lamotrigine treatment Glx concentrations were significantly increased. Baseline levels of Glx did not predict response to lamotrigine. LIMITATIONS: The main limitation of the study was the modest sample size. Most patients were medicated which may have modified the effect of lamotrigine on glutamate activity. MRS at 3T cannot give a reliable estimate of glutamate separate from its main metabolite, glutamine, and thus changes in Glx may not give a precise estimate of effects of lamotrigine on glutamate itself. CONCLUSION: Lamotrigine does not appear to have a direct effect on glutamate levels in ACC in bipolar patients. However, therapeutic improvement during lamotrigine was associated with increased Glx, suggesting that alterations in glutamatergic activity might be related to recovery from bipolar depression. |
format | Online Article Text |
id | pubmed-6368663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier/North-Holland Biomedical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-63686632019-03-01 Changes in brain Glx in depressed bipolar patients treated with lamotrigine: A proton MRS study Godlewska, Beata R. Emir, Uzay E. Masaki, Charles Bargiotas, Theodoras Cowen, Philip J J Affect Disord Article BACKGROUND: Lamotrigine is a useful treatment in bipolar depression but requires several weeks of dose titration before its clinical effects can be assessed. Animal experimental studies suggest that lamotrigine lowers glutamate release. The aim of the current study was to assess the effect of lamotrigine on brain glutamate in depressed bipolar patients and to determine whether baseline glutamate could be used to predict clinical response. METHODS: We studied 21 bipolar patients who received lamotrigine treatment for a current episode of depression. Before starting lamotrigine and after 10–12 weeks treatment, patients underwent proton magnetic resonance spectroscopy (MRS) scanning at 3 Tesla where levels of glutamate (measured as Glx) were determined in anterior cingulate cortex (ACC). RESULTS: Overall, lamotrigine treatment had no significant effect on Glx levels in ACC. However, in patients who responded clinically to lamotrigine treatment Glx concentrations were significantly increased. Baseline levels of Glx did not predict response to lamotrigine. LIMITATIONS: The main limitation of the study was the modest sample size. Most patients were medicated which may have modified the effect of lamotrigine on glutamate activity. MRS at 3T cannot give a reliable estimate of glutamate separate from its main metabolite, glutamine, and thus changes in Glx may not give a precise estimate of effects of lamotrigine on glutamate itself. CONCLUSION: Lamotrigine does not appear to have a direct effect on glutamate levels in ACC in bipolar patients. However, therapeutic improvement during lamotrigine was associated with increased Glx, suggesting that alterations in glutamatergic activity might be related to recovery from bipolar depression. Elsevier/North-Holland Biomedical Press 2019-03-01 /pmc/articles/PMC6368663/ /pubmed/30599363 http://dx.doi.org/10.1016/j.jad.2018.12.092 Text en © The Authors. Published by Elsevier B.V. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Godlewska, Beata R. Emir, Uzay E. Masaki, Charles Bargiotas, Theodoras Cowen, Philip J Changes in brain Glx in depressed bipolar patients treated with lamotrigine: A proton MRS study |
title | Changes in brain Glx in depressed bipolar patients treated with lamotrigine: A proton MRS study |
title_full | Changes in brain Glx in depressed bipolar patients treated with lamotrigine: A proton MRS study |
title_fullStr | Changes in brain Glx in depressed bipolar patients treated with lamotrigine: A proton MRS study |
title_full_unstemmed | Changes in brain Glx in depressed bipolar patients treated with lamotrigine: A proton MRS study |
title_short | Changes in brain Glx in depressed bipolar patients treated with lamotrigine: A proton MRS study |
title_sort | changes in brain glx in depressed bipolar patients treated with lamotrigine: a proton mrs study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368663/ https://www.ncbi.nlm.nih.gov/pubmed/30599363 http://dx.doi.org/10.1016/j.jad.2018.12.092 |
work_keys_str_mv | AT godlewskabeatar changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy AT emiruzaye changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy AT masakicharles changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy AT bargiotastheodoras changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy AT cowenphilipj changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy |