Cargando…
The role of wearables in spinal posture analysis: a systematic review
BACKGROUND: Wearables consist of numerous technologies that are worn on the body and measure parameters such as step count, distance travelled, heart rate and sleep quantity. Recently, various wearable systems have been designed capable of detecting spinal posture and providing live biofeedback when...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368717/ https://www.ncbi.nlm.nih.gov/pubmed/30736775 http://dx.doi.org/10.1186/s12891-019-2430-6 |
Sumario: | BACKGROUND: Wearables consist of numerous technologies that are worn on the body and measure parameters such as step count, distance travelled, heart rate and sleep quantity. Recently, various wearable systems have been designed capable of detecting spinal posture and providing live biofeedback when poor posture is sustained. It is hypothesised that long-term use of these wearables may improve spinal posture. RESEARCH QUESTIONS: To (1) examine the capabilities of current devices assessing spine posture, (2) to identify studies implementing such devices in the clinical setting and (3) comment on the clinical practicality of integration of such devices into routine care where appropriate. METHODS: A comprehensive systematic review was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA) across the following databases: PubMed; MEDLINE; EMBASE; Cochrane; and Scopus. Articles related to wearables systems able to measure spinal posture were selected amongst all published studies dated from 1980 onwards. Extracted data was collected as per a predetermined checklist including device types, study objectives, findings and limitations. RESULTS: A total of 37 articles were extensively reviewed and analysed in the final review. The proposed wearables most commonly used Inertial Measurement Units (IMUs) as the underlying technology. Wearables measuring spinal posture have been proposed to be used in the following settings: post-operative rehabilitation; treatment of musculoskeletal disorders; diagnosis of pathological spinal posture; monitoring of progression of Parkinson’s Disease; detection of falls; workplace occupational health and safety; comparison of interventions. CONCLUSIONS: This is the first and only study to specifically review wearable devices that monitor spinal posture. Our findings suggest that currently available devices are capable of assessing spinal posture with good accuracy in the clinical setting. However, further validation regarding the long-term use of these technologies and improvements regarding practicality is required for commercialisation. |
---|