Cargando…

Splitting on categorical predictors in random forests

One reason for the widespread success of random forests (RFs) is their ability to analyze most datasets without preprocessing. For example, in contrast to many other statistical methods and machine learning approaches, no recoding such as dummy coding is required to handle ordinal and nominal predic...

Descripción completa

Detalles Bibliográficos
Autores principales: Wright, Marvin N., König, Inke R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368971/
https://www.ncbi.nlm.nih.gov/pubmed/30746306
http://dx.doi.org/10.7717/peerj.6339

Ejemplares similares