Cargando…
Splitting on categorical predictors in random forests
One reason for the widespread success of random forests (RFs) is their ability to analyze most datasets without preprocessing. For example, in contrast to many other statistical methods and machine learning approaches, no recoding such as dummy coding is required to handle ordinal and nominal predic...
Autores principales: | Wright, Marvin N., König, Inke R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368971/ https://www.ncbi.nlm.nih.gov/pubmed/30746306 http://dx.doi.org/10.7717/peerj.6339 |
Ejemplares similares
-
Estimating the number of principal components via Split-Half Eigenvector Matching (SHEM)
por: Gladwin, Thomas E.
Publicado: (2023) -
Do little interactions get lost in dark random forests?
por: Wright, Marvin N., et al.
Publicado: (2016) -
Intuition is useful for medical practitioners but it cannot replace methodological knowledge in medical research: a case of ordered categorical outcomes
por: Trkulja, Vladimir, et al.
Publicado: (2020) -
Capturing asymmetry in COVID-19 counts using an improved skewness measure for time series data
por: Bapat, Sudeep R.
Publicado: (2023) -
Detecting the impact of land cover change on observed rainfall
por: Liang, Chun Xia, et al.
Publicado: (2019)