Cargando…
Feature Genes Selection Using Fuzzy Rough Uncertainty Metric for Tumor Diagnosis
To select more effective feature genes, many existing algorithms focus on the selection and study of evaluation methods for feature genes, ignoring the accurate mapping of original information in data processing. Therefore, for solving this problem, a new model is proposed in this paper: rough uncer...
Autores principales: | Xu, Jiucheng, Wang, Yun, Xu, Keqiang, Zhang, Tianli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369463/ https://www.ncbi.nlm.nih.gov/pubmed/30809269 http://dx.doi.org/10.1155/2019/6705648 |
Ejemplares similares
-
Computational intelligence and feature selection: rough and fuzzy approaches
por: Jensen, Richard, et al.
Publicado: (2008) -
Uncertainty management with fuzzy and rough sets: recent advances and applications
por: Bello, Rafael, et al.
Publicado: (2019) -
A Gene selection approach based on the fisher linear discriminant and the neighborhood rough set
por: Sun, Lin, et al.
Publicado: (2017) -
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
por: Maji, Pradipta, et al.
Publicado: (2015) -
Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification
por: Xu, Jiucheng, et al.
Publicado: (2018)