Cargando…

Expression Profiles of Long Noncoding RNAs in Intranasal LPS-Mediated Alzheimer's Disease Model in Mice

Alzheimer's disease (AD), characterized by memory loss, cognitive decline, and dementia, is a progressive neurodegenerative disease. Although the long noncoding RNAs (lncRNAs) have recently been identified to play a role in the pathogenesis of AD, the specific effects of lncRNAs in AD remain un...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Liang, Liu, Lan, Li, Guangyi, Jiang, Pengcheng, Wang, Yan, Li, Jianming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369469/
https://www.ncbi.nlm.nih.gov/pubmed/30809552
http://dx.doi.org/10.1155/2019/9642589
Descripción
Sumario:Alzheimer's disease (AD), characterized by memory loss, cognitive decline, and dementia, is a progressive neurodegenerative disease. Although the long noncoding RNAs (lncRNAs) have recently been identified to play a role in the pathogenesis of AD, the specific effects of lncRNAs in AD remain unclear. In present study, we have investigated the expression profiles of lncRNAs in hippocampal of intranasal LPS-mediated Alzheimer's disease models in mice by microarray method. A total of 395 lncRNAs and 123 mRNAs was detected to express differently in AD models and controls (>2.0 folds, p<0.05). The microarray expression was validated by Quantitative Real-Time-PCR (qRT-PCR). The pathway analysis showed the mRNAs that correlated with lncRNAs were involved in inflammation, apoptosis, and nervous system related pathways. The lncRNA-TFs network analysis suggested the lncRNAs were mostly regulated by HMGA2, ONECUT2, FOXO1, and CDC5L. Additionally, lncRNA-target-TFs network analysis indicated the FOXL1, CDC5L, ONECUT2, and CDX1 to be the TFs most likely to regulate the production of these lncRNAs. This is the first study to investigate lncRNAs expression pattern in intranasal LPS-mediated Alzheimer's disease model in mice. And these results may facilitate the understanding of the pathogenesis of AD targeting lncRNAs.