Cargando…
Handling Big Data Scalability in Biological Domain Using Parallel and Distributed Processing: A Case of Three Biological Semantic Similarity Measures
In the field of biology, researchers need to compare genes or gene products using semantic similarity measures (SSM). Continuous data growth and diversity in data characteristics comprise what is called big data; current biological SSMs cannot handle big data. Therefore, these measures need the abil...
Autores principales: | Almasoud, Ameera M., Al-Khalifa, Hend S., Al-Salman, Abdulmalik S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369486/ https://www.ncbi.nlm.nih.gov/pubmed/30809545 http://dx.doi.org/10.1155/2019/6750296 |
Ejemplares similares
-
An Efficient Parallelized Ontology Network-Based Semantic Similarity Measure for Big Biomedical Document Clustering
por: Li, Meijing, et al.
Publicado: (2021) -
Parallel Generative Topographic Mapping: An Efficient Approach for Big Data Handling
por: Lin, Arkadii, et al.
Publicado: (2020) -
Multi-domain semantic similarity in biomedical research
por: Ferreira, João D., et al.
Publicado: (2019) -
Bi-directional semantic similarity for gene ontology to optimize biological and clinical analyses
por: Bien, Sang Jay, et al.
Publicado: (2012) -
A7׳ta: Data on a monolingual Arabic parallel corpus for grammar checking
por: Madi, Nora, et al.
Publicado: (2018)