Cargando…

Spectral dynamics of shift current in ferroelectric semiconductor SbSI

Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. Thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Sotome, M., Nakamura, M., Fujioka, J., Ogino, M., Kaneko, Y., Morimoto, T., Zhang, Y., Kawasaki, M., Nagaosa, N., Tokura, Y., Ogawa, N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369763/
https://www.ncbi.nlm.nih.gov/pubmed/30670652
http://dx.doi.org/10.1073/pnas.1802427116
_version_ 1783394247332855808
author Sotome, M.
Nakamura, M.
Fujioka, J.
Ogino, M.
Kaneko, Y.
Morimoto, T.
Zhang, Y.
Kawasaki, M.
Nagaosa, N.
Tokura, Y.
Ogawa, N.
author_facet Sotome, M.
Nakamura, M.
Fujioka, J.
Ogino, M.
Kaneko, Y.
Morimoto, T.
Zhang, Y.
Kawasaki, M.
Nagaosa, N.
Tokura, Y.
Ogawa, N.
author_sort Sotome, M.
collection PubMed
description Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.
format Online
Article
Text
id pubmed-6369763
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-63697632019-02-14 Spectral dynamics of shift current in ferroelectric semiconductor SbSI Sotome, M. Nakamura, M. Fujioka, J. Ogino, M. Kaneko, Y. Morimoto, T. Zhang, Y. Kawasaki, M. Nagaosa, N. Tokura, Y. Ogawa, N. Proc Natl Acad Sci U S A Physical Sciences Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells. National Academy of Sciences 2019-02-05 2019-01-22 /pmc/articles/PMC6369763/ /pubmed/30670652 http://dx.doi.org/10.1073/pnas.1802427116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Sotome, M.
Nakamura, M.
Fujioka, J.
Ogino, M.
Kaneko, Y.
Morimoto, T.
Zhang, Y.
Kawasaki, M.
Nagaosa, N.
Tokura, Y.
Ogawa, N.
Spectral dynamics of shift current in ferroelectric semiconductor SbSI
title Spectral dynamics of shift current in ferroelectric semiconductor SbSI
title_full Spectral dynamics of shift current in ferroelectric semiconductor SbSI
title_fullStr Spectral dynamics of shift current in ferroelectric semiconductor SbSI
title_full_unstemmed Spectral dynamics of shift current in ferroelectric semiconductor SbSI
title_short Spectral dynamics of shift current in ferroelectric semiconductor SbSI
title_sort spectral dynamics of shift current in ferroelectric semiconductor sbsi
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369763/
https://www.ncbi.nlm.nih.gov/pubmed/30670652
http://dx.doi.org/10.1073/pnas.1802427116
work_keys_str_mv AT sotomem spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT nakamuram spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT fujiokaj spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT oginom spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT kanekoy spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT morimotot spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT zhangy spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT kawasakim spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT nagaosan spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT tokuray spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi
AT ogawan spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi