Cargando…
Spectral dynamics of shift current in ferroelectric semiconductor SbSI
Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. Thi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369763/ https://www.ncbi.nlm.nih.gov/pubmed/30670652 http://dx.doi.org/10.1073/pnas.1802427116 |
_version_ | 1783394247332855808 |
---|---|
author | Sotome, M. Nakamura, M. Fujioka, J. Ogino, M. Kaneko, Y. Morimoto, T. Zhang, Y. Kawasaki, M. Nagaosa, N. Tokura, Y. Ogawa, N. |
author_facet | Sotome, M. Nakamura, M. Fujioka, J. Ogino, M. Kaneko, Y. Morimoto, T. Zhang, Y. Kawasaki, M. Nagaosa, N. Tokura, Y. Ogawa, N. |
author_sort | Sotome, M. |
collection | PubMed |
description | Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells. |
format | Online Article Text |
id | pubmed-6369763 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-63697632019-02-14 Spectral dynamics of shift current in ferroelectric semiconductor SbSI Sotome, M. Nakamura, M. Fujioka, J. Ogino, M. Kaneko, Y. Morimoto, T. Zhang, Y. Kawasaki, M. Nagaosa, N. Tokura, Y. Ogawa, N. Proc Natl Acad Sci U S A Physical Sciences Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells. National Academy of Sciences 2019-02-05 2019-01-22 /pmc/articles/PMC6369763/ /pubmed/30670652 http://dx.doi.org/10.1073/pnas.1802427116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Sotome, M. Nakamura, M. Fujioka, J. Ogino, M. Kaneko, Y. Morimoto, T. Zhang, Y. Kawasaki, M. Nagaosa, N. Tokura, Y. Ogawa, N. Spectral dynamics of shift current in ferroelectric semiconductor SbSI |
title | Spectral dynamics of shift current in ferroelectric semiconductor SbSI |
title_full | Spectral dynamics of shift current in ferroelectric semiconductor SbSI |
title_fullStr | Spectral dynamics of shift current in ferroelectric semiconductor SbSI |
title_full_unstemmed | Spectral dynamics of shift current in ferroelectric semiconductor SbSI |
title_short | Spectral dynamics of shift current in ferroelectric semiconductor SbSI |
title_sort | spectral dynamics of shift current in ferroelectric semiconductor sbsi |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369763/ https://www.ncbi.nlm.nih.gov/pubmed/30670652 http://dx.doi.org/10.1073/pnas.1802427116 |
work_keys_str_mv | AT sotomem spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT nakamuram spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT fujiokaj spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT oginom spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT kanekoy spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT morimotot spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT zhangy spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT kawasakim spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT nagaosan spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT tokuray spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi AT ogawan spectraldynamicsofshiftcurrentinferroelectricsemiconductorsbsi |