Cargando…

Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity

BACKGROUND: Silver nanoparticles (AgNPs) have attracted great attention due to their outstanding electrical, optical, magnetic, catalytic, and antimicrobial properties. However, there is a need for alternative production methods that use less toxic precursors and reduce their undesirable by-products...

Descripción completa

Detalles Bibliográficos
Autores principales: AbuDalo, Muna A., Al-Mheidat, Ismaeel R., Al-Shurafat, Alham W., Grinham, Colleen, Oyanedel-Craver, Vinka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369825/
https://www.ncbi.nlm.nih.gov/pubmed/30775181
http://dx.doi.org/10.7717/peerj.6413
_version_ 1783394252369166336
author AbuDalo, Muna A.
Al-Mheidat, Ismaeel R.
Al-Shurafat, Alham W.
Grinham, Colleen
Oyanedel-Craver, Vinka
author_facet AbuDalo, Muna A.
Al-Mheidat, Ismaeel R.
Al-Shurafat, Alham W.
Grinham, Colleen
Oyanedel-Craver, Vinka
author_sort AbuDalo, Muna A.
collection PubMed
description BACKGROUND: Silver nanoparticles (AgNPs) have attracted great attention due to their outstanding electrical, optical, magnetic, catalytic, and antimicrobial properties. However, there is a need for alternative production methods that use less toxic precursors and reduce their undesirable by-products. Phyto-extracts from the leaves of olive and rosemary plants can be used as reducing agents and (in conjunction with Tollens’ reagent) can even enhance AgNP antimicrobial activity. METHODS: Conditions for the proposed hybrid synthesis method were optimized for olive leaf extracts (OLEs) and rosemary leaf extracts (RLEs). The resultant AgNPs were characterized using UV–visible spectroscopy, an environmental scanning electron microscope, and Dynamic Light Scattering analysis. An atomic absorption spectrophotometer was used to measure AgNP concentration. Fourier transform infrared spectroscopy (FTIR) was used to determine the specific functional groups responsible for the reduction of both silver nitrate and capping agents in the leaf extract. Additionally, the antimicrobial properties of the synthesized AgNPs were assessed against Gram-negative bacteria (Escherichia coli and Salmonella enterica) and Gram-positive bacteria (Staphylococcus aureus), by using both the Kirby–Bauer and broth microdilution methods on Mueller–Hinton (MH) agar plates. RESULTS AND DISCUSSION: A simple, feasible, and rapid method has been successfully developed for silver nanoparticle synthesis by reducing Tollens’ reagent using leaf extracts from olive and rosemary plants (widely available in Jordan). Scanning electron microscopy images showed that the method produces AgNPs with a spherical shape and average core sizes of 45 ± 2 and 38 ± 3 nm for OLE and RLE, respectively. A negative zeta potential (ζ) of −43.15 ± 3.65 mV for OLE-AgNPs and −33.65 ± 2.88mV for RLE-AgNPs proved the stability of silver nanoparticles. FTIR spectra for AgNPs and leaf extracts indicated that the compounds present in the leaf extracts play an important role in the coating/capping of synthesized nanoparticles. The manufactured AgNPs exhibited an antibacterial effect against Escherichia coli and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 9.38 and 4.69 μl/ml for OLE-AgNPs and RLE-AgNPs, respectively. The MIC for Salmonella enterica were 18.75 μl/ml for both OLE-AgNPs and RLE-AgNPs. Furthermore, our results indicated that the RLE-AgNPs exhibited a stronger antibacterial effect than OLE-AgNPs against different bacteria species. These results contribute to the body of knowledge on nanoparticle production using plant-mediated synthesis and performance. They also offer insights into the potential for scaling up this production process for commercial implementation.
format Online
Article
Text
id pubmed-6369825
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-63698252019-02-15 Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity AbuDalo, Muna A. Al-Mheidat, Ismaeel R. Al-Shurafat, Alham W. Grinham, Colleen Oyanedel-Craver, Vinka PeerJ Microbiology BACKGROUND: Silver nanoparticles (AgNPs) have attracted great attention due to their outstanding electrical, optical, magnetic, catalytic, and antimicrobial properties. However, there is a need for alternative production methods that use less toxic precursors and reduce their undesirable by-products. Phyto-extracts from the leaves of olive and rosemary plants can be used as reducing agents and (in conjunction with Tollens’ reagent) can even enhance AgNP antimicrobial activity. METHODS: Conditions for the proposed hybrid synthesis method were optimized for olive leaf extracts (OLEs) and rosemary leaf extracts (RLEs). The resultant AgNPs were characterized using UV–visible spectroscopy, an environmental scanning electron microscope, and Dynamic Light Scattering analysis. An atomic absorption spectrophotometer was used to measure AgNP concentration. Fourier transform infrared spectroscopy (FTIR) was used to determine the specific functional groups responsible for the reduction of both silver nitrate and capping agents in the leaf extract. Additionally, the antimicrobial properties of the synthesized AgNPs were assessed against Gram-negative bacteria (Escherichia coli and Salmonella enterica) and Gram-positive bacteria (Staphylococcus aureus), by using both the Kirby–Bauer and broth microdilution methods on Mueller–Hinton (MH) agar plates. RESULTS AND DISCUSSION: A simple, feasible, and rapid method has been successfully developed for silver nanoparticle synthesis by reducing Tollens’ reagent using leaf extracts from olive and rosemary plants (widely available in Jordan). Scanning electron microscopy images showed that the method produces AgNPs with a spherical shape and average core sizes of 45 ± 2 and 38 ± 3 nm for OLE and RLE, respectively. A negative zeta potential (ζ) of −43.15 ± 3.65 mV for OLE-AgNPs and −33.65 ± 2.88mV for RLE-AgNPs proved the stability of silver nanoparticles. FTIR spectra for AgNPs and leaf extracts indicated that the compounds present in the leaf extracts play an important role in the coating/capping of synthesized nanoparticles. The manufactured AgNPs exhibited an antibacterial effect against Escherichia coli and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 9.38 and 4.69 μl/ml for OLE-AgNPs and RLE-AgNPs, respectively. The MIC for Salmonella enterica were 18.75 μl/ml for both OLE-AgNPs and RLE-AgNPs. Furthermore, our results indicated that the RLE-AgNPs exhibited a stronger antibacterial effect than OLE-AgNPs against different bacteria species. These results contribute to the body of knowledge on nanoparticle production using plant-mediated synthesis and performance. They also offer insights into the potential for scaling up this production process for commercial implementation. PeerJ Inc. 2019-02-08 /pmc/articles/PMC6369825/ /pubmed/30775181 http://dx.doi.org/10.7717/peerj.6413 Text en © 2019 AbuDalo et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Microbiology
AbuDalo, Muna A.
Al-Mheidat, Ismaeel R.
Al-Shurafat, Alham W.
Grinham, Colleen
Oyanedel-Craver, Vinka
Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity
title Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity
title_full Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity
title_fullStr Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity
title_full_unstemmed Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity
title_short Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity
title_sort synthesis of silver nanoparticles using a modified tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369825/
https://www.ncbi.nlm.nih.gov/pubmed/30775181
http://dx.doi.org/10.7717/peerj.6413
work_keys_str_mv AT abudalomunaa synthesisofsilvernanoparticlesusingamodifiedtollensmethodinconjunctionwithphytochemicalsandassessmentoftheirantimicrobialactivity
AT almheidatismaeelr synthesisofsilvernanoparticlesusingamodifiedtollensmethodinconjunctionwithphytochemicalsandassessmentoftheirantimicrobialactivity
AT alshurafatalhamw synthesisofsilvernanoparticlesusingamodifiedtollensmethodinconjunctionwithphytochemicalsandassessmentoftheirantimicrobialactivity
AT grinhamcolleen synthesisofsilvernanoparticlesusingamodifiedtollensmethodinconjunctionwithphytochemicalsandassessmentoftheirantimicrobialactivity
AT oyanedelcravervinka synthesisofsilvernanoparticlesusingamodifiedtollensmethodinconjunctionwithphytochemicalsandassessmentoftheirantimicrobialactivity