Cargando…

Elevational patterns of the percentages of plant genera with tropical and temperate affinities in Nepal

BACKGROUND: Geographical patterns of species diversity are one of the key topics in biogeography and ecology. The effects of biogeographical affinities on the elevational patterns of species diversity have attracted much attention recently, but the factors driving elevational patterns of the percent...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, Yunyun, Feng, Jianmeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369827/
https://www.ncbi.nlm.nih.gov/pubmed/30775164
http://dx.doi.org/10.7717/peerj.6116
Descripción
Sumario:BACKGROUND: Geographical patterns of species diversity are one of the key topics in biogeography and ecology. The effects of biogeographical affinities on the elevational patterns of species diversity have attracted much attention recently, but the factors driving elevational patterns of the percentages of plants with tropical and temperate biogeographical affinities have not been adequately explored. METHODS: We first used univariate least squares regressions to evaluate the effects of each predictor on the elevational patterns of the percentages of plant genera with tropical and temperate affinities in Nepal. Then, the lowest corrected Akaike information criterion value was used to find the best-fit models for all possible combinations of the aforementioned predictors. We also conducted partial regression analysis to investigate the relative influences of each predictor in the best-fit model of the percentages of plant genera with tropical and temperate affinities. RESULTS: With the increase of elevation, the percentage of plant genera with tropical affinity significantly decreased, while that of plant genera with temperate affinity increased. The strongest predictor of the percentages of plant genera with tropical affinity in the examined area was the minimum temperature of the coldest month. For the elevational patterns of the percentages of plant genera with temperate affinity, the strongest predictor was the maximum temperature of the warmest month. Compared with mid-domain effects (MDE), climatic factors explained much more of the elevational variation of the percentages of plant genera with tropical and temperate affinities. DISCUSSION: The elevational patterns of the percentages of plant genera with tropical affinities and the factors driving them supported the revision of the freezing-tolerance hypothesis. That is, freezing may filter out plant genera with tropical affinity, resulting in the decrease of their percentages, with winter coldness playing a predominant role. Winter coldness may not only exert filtering effects on plant genera with tropical affinity, but may also regulate the interactions between plant genera with tropical and temperate affinities. The elevational patterns of tropical and temperate plant diversities, and those of their percentages, might be controlled by different factors or mechanisms. Freezing-tolerance and the interactions between plant genera with tropical and temperate affinities regulated by climatic factors played stronger roles than MDE in shaping the elevational patterns of the percentages of plant genera with tropical and temperate affinities in Nepal.