Cargando…
Plant-soil feedbacks promote coexistence and resilience in multi-species communities
Both ecological theory and empirical evidence suggest that negative frequency dependent feedbacks structure plant communities, but integration of these findings has been limited. Here we develop a generic model of frequency dependent feedback to analyze coexistence and invasibility in random theoret...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370276/ https://www.ncbi.nlm.nih.gov/pubmed/30742633 http://dx.doi.org/10.1371/journal.pone.0211572 |
Sumario: | Both ecological theory and empirical evidence suggest that negative frequency dependent feedbacks structure plant communities, but integration of these findings has been limited. Here we develop a generic model of frequency dependent feedback to analyze coexistence and invasibility in random theoretical and real communities for which frequency dependence through plant-soil feedbacks (PSFs) was determined empirically. We investigated community stability and invasibility by means of mechanistic analysis of invasion conditions and numerical simulations. We found that communities fall along a spectrum of coexistence types ranging from strict pair-wise negative feedback to strict intransitive networks. Intermediate community structures characterized by partial intransitivity may feature “keystone competitors” which disproportionately influence community stability. Real communities were characterized by stronger negative feedback and higher robustness to species loss than randomly assembled communities. Partial intransitivity became increasingly likely in more diverse communities. The results presented here theoretically explain why more diverse communities are characterized by stronger negative frequency dependent feedbacks, a pattern previously encountered in observational studies. Natural communities are more likely to be maintained by strict negative plant-soil feedback than expected by chance, but our results also show that community stability often depends on partial intransitivity. These results suggest that plant-soil feedbacks can facilitate coexistence in multi-species communities, but that these feedbacks may also initiate cascading effects on community diversity following from single-species loss. |
---|