Cargando…

Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90

The molecular chaperone Hsp90 stabilizes and activates client proteins. Co-chaperones and post-translational modifications tightly regulate Hsp90 function and consequently lead to activation of clients. However, it is unclear whether this process occurs abruptly or gradually in the cellular context....

Descripción completa

Detalles Bibliográficos
Autores principales: Sager, Rebecca A., Woodford, Mark R., Backe, Sarah J., Makedon, Alan M., Baker-Williams, Alexander J., DiGregorio, Bryanna T., Loiselle, David R., Haystead, Timothy A., Zachara, Natasha E., Prodromou, Chrisostomos, Bourboulia, Dimitra, Schmidt, Laura S., Linehan, W. Marston, Bratslavsky, Gennady, Mollapour, Mehdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370319/
https://www.ncbi.nlm.nih.gov/pubmed/30699359
http://dx.doi.org/10.1016/j.celrep.2019.01.018
_version_ 1783394345944088576
author Sager, Rebecca A.
Woodford, Mark R.
Backe, Sarah J.
Makedon, Alan M.
Baker-Williams, Alexander J.
DiGregorio, Bryanna T.
Loiselle, David R.
Haystead, Timothy A.
Zachara, Natasha E.
Prodromou, Chrisostomos
Bourboulia, Dimitra
Schmidt, Laura S.
Linehan, W. Marston
Bratslavsky, Gennady
Mollapour, Mehdi
author_facet Sager, Rebecca A.
Woodford, Mark R.
Backe, Sarah J.
Makedon, Alan M.
Baker-Williams, Alexander J.
DiGregorio, Bryanna T.
Loiselle, David R.
Haystead, Timothy A.
Zachara, Natasha E.
Prodromou, Chrisostomos
Bourboulia, Dimitra
Schmidt, Laura S.
Linehan, W. Marston
Bratslavsky, Gennady
Mollapour, Mehdi
author_sort Sager, Rebecca A.
collection PubMed
description The molecular chaperone Hsp90 stabilizes and activates client proteins. Co-chaperones and post-translational modifications tightly regulate Hsp90 function and consequently lead to activation of clients. However, it is unclear whether this process occurs abruptly or gradually in the cellular context. We show that casein kinase-2 phosphorylation of the co-chaperone folliculin-interacting protein 1 (FNIP1) on priming serine-938 and subsequent relay phosphorylation on serine-939, 941, 946, and 948 promotes its gradual interaction with Hsp90. This leads to incremental inhibition of Hsp90 ATPase activity and gradual activation of both kinase and non-kinase clients. We further demonstrate that serine/threonine protein phosphatase 5 (PP5) dephosphorylates FNIP1, allowing the addition of O-GlcNAc (O-linked N-acetylglucosamine) to the priming serine-938. This process antagonizes phosphorylation of FNIP1, preventing its interaction with Hsp90, and consequently promotes FNIP1 lysine-1119 ubiquitination and proteasomal degradation. These findings provide a mechanism for gradual activation of the client proteins through intricate crosstalk of post-translational modifications of the co-chaperone FNIP1.
format Online
Article
Text
id pubmed-6370319
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-63703192019-02-11 Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90 Sager, Rebecca A. Woodford, Mark R. Backe, Sarah J. Makedon, Alan M. Baker-Williams, Alexander J. DiGregorio, Bryanna T. Loiselle, David R. Haystead, Timothy A. Zachara, Natasha E. Prodromou, Chrisostomos Bourboulia, Dimitra Schmidt, Laura S. Linehan, W. Marston Bratslavsky, Gennady Mollapour, Mehdi Cell Rep Article The molecular chaperone Hsp90 stabilizes and activates client proteins. Co-chaperones and post-translational modifications tightly regulate Hsp90 function and consequently lead to activation of clients. However, it is unclear whether this process occurs abruptly or gradually in the cellular context. We show that casein kinase-2 phosphorylation of the co-chaperone folliculin-interacting protein 1 (FNIP1) on priming serine-938 and subsequent relay phosphorylation on serine-939, 941, 946, and 948 promotes its gradual interaction with Hsp90. This leads to incremental inhibition of Hsp90 ATPase activity and gradual activation of both kinase and non-kinase clients. We further demonstrate that serine/threonine protein phosphatase 5 (PP5) dephosphorylates FNIP1, allowing the addition of O-GlcNAc (O-linked N-acetylglucosamine) to the priming serine-938. This process antagonizes phosphorylation of FNIP1, preventing its interaction with Hsp90, and consequently promotes FNIP1 lysine-1119 ubiquitination and proteasomal degradation. These findings provide a mechanism for gradual activation of the client proteins through intricate crosstalk of post-translational modifications of the co-chaperone FNIP1. 2019-01-29 /pmc/articles/PMC6370319/ /pubmed/30699359 http://dx.doi.org/10.1016/j.celrep.2019.01.018 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Sager, Rebecca A.
Woodford, Mark R.
Backe, Sarah J.
Makedon, Alan M.
Baker-Williams, Alexander J.
DiGregorio, Bryanna T.
Loiselle, David R.
Haystead, Timothy A.
Zachara, Natasha E.
Prodromou, Chrisostomos
Bourboulia, Dimitra
Schmidt, Laura S.
Linehan, W. Marston
Bratslavsky, Gennady
Mollapour, Mehdi
Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90
title Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90
title_full Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90
title_fullStr Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90
title_full_unstemmed Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90
title_short Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90
title_sort post-translational regulation of fnip1 creates a rheostat for the molecular chaperone hsp90
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370319/
https://www.ncbi.nlm.nih.gov/pubmed/30699359
http://dx.doi.org/10.1016/j.celrep.2019.01.018
work_keys_str_mv AT sagerrebeccaa posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT woodfordmarkr posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT backesarahj posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT makedonalanm posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT bakerwilliamsalexanderj posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT digregoriobryannat posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT loiselledavidr posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT haysteadtimothya posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT zacharanatashae posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT prodromouchrisostomos posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT bourbouliadimitra posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT schmidtlauras posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT linehanwmarston posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT bratslavskygennady posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90
AT mollapourmehdi posttranslationalregulationoffnip1createsarheostatforthemolecularchaperonehsp90